ÌâÄ¿ÄÚÈÝ
ÒÑÖª¹«±ÈΪq£¨q¡Ù1£©µÄÎÞÇîµÈ±ÈÊýÁÐ{an}µÄÊ×Ïîa1=1£®
£¨1£©Èôq=
£¬ÔÚa1Óëa2Ö®¼ä²åÈëk¸öÊýb1£¬b2£¬¡£¬bk£¬Ê¹µÃa1£¬b1£¬b2£¬¡£¬bk£¬a2£¬a3³ÉµÈ²îÊýÁУ¬ÇóÕâk¸öÊý£»
£¨2£©¶ÔÓÚÈÎÒâ¸ø¶¨µÄÕýÕûÊým£¬ÔÚa1£¬a2£¬a3µÄa1Óëa2ºÍa2Óëa3Ö®¼ä¹²²åÈëm¸öÊý£¬¹¹³ÉÒ»¸öµÈ²îÊýÁУ¬Ç󹫱ÈqµÄËùÓпÉÄÜȡֵµÄ¼¯ºÏ£¨ÓÃm±íʾ£©£»
£¨3£©µ±ÇÒ½öµ±qÈ¡ºÎֵʱ£¬ÔÚÊýÁÐ{an}µÄÿÏàÁÚÁ½Ïîak£¬ak+1Ö®¼ä²åÈëck£¨k¡ÊN*£¬ck¡ÊN£©¸öÊý£¬Ê¹Ö®³ÉΪһ¸öµÈ²îÊýÁУ¿²¢Çóc1µÄËùÓпÉÄÜÖµµÄ¼¯ºÏ¼°{cn}µÄͨÏʽ£¨ÓÃq±íʾ£©£®
£¨1£©Èôq=
| 1 |
| 3 |
£¨2£©¶ÔÓÚÈÎÒâ¸ø¶¨µÄÕýÕûÊým£¬ÔÚa1£¬a2£¬a3µÄa1Óëa2ºÍa2Óëa3Ö®¼ä¹²²åÈëm¸öÊý£¬¹¹³ÉÒ»¸öµÈ²îÊýÁУ¬Ç󹫱ÈqµÄËùÓпÉÄÜȡֵµÄ¼¯ºÏ£¨ÓÃm±íʾ£©£»
£¨3£©µ±ÇÒ½öµ±qÈ¡ºÎֵʱ£¬ÔÚÊýÁÐ{an}µÄÿÏàÁÚÁ½Ïîak£¬ak+1Ö®¼ä²åÈëck£¨k¡ÊN*£¬ck¡ÊN£©¸öÊý£¬Ê¹Ö®³ÉΪһ¸öµÈ²îÊýÁУ¿²¢Çóc1µÄËùÓпÉÄÜÖµµÄ¼¯ºÏ¼°{cn}µÄͨÏʽ£¨ÓÃq±íʾ£©£®
¿¼µã£ºÊýÁеÄÓ¦ÓÃ
רÌ⣺ѹÖáÌâ,µÈ²îÊýÁÐÓëµÈ±ÈÊýÁÐ
·ÖÎö£º£¨1£©ÓÉÌõ¼þµÃ1£¬b1£¬b2£¬¡bk£¬
£¬
³ÉµÈ²îÊýÁУ¬Çó³ö¹«²îd=-
£¬k=2£¬¼´¿ÉÇóÕâ2¸öÊý£»
£¨2£©Éèa1Óëa2Ö®¼ä²åÈëk¸öÊý£¬k¡ÊN£¬ÇÒk¡Üm£¬ÔòÔÚa2Óëa3Ö®¼ä²åÈ루m-k£©¸öÊý£¬ÓÉÌõ¼þÕâµÈ²îÊýÁеÚÒ»ÏîΪa1=1£¬µÚk+2ÏîΪa2=q£¬µÚm+3ÏîΪa2=q2£¬Áгö·½³Ì£¬¼´¿ÉÇ󹫱ÈqµÄËùÓпÉÄÜȡֵµÄ¼¯ºÏ£»
£¨3£©µ±ÇÒ½öµ±q¡ÊN£¬ÇÒq¡Ý2ʱ£¬ÔÚÊýÁÐ{an}µÄÿÏàÁÚÁ½Ïîak£¬ak+1Ö®¼ä²åÈëck£¨k¡ÊN*£¬ck¡ÊN£©¸öÊý£¬Ê¹Ö®³ÉΪһ¸öµÈ²îÊýÁУ¬ÔÙ½øÐÐÖ¤Ã÷¼´¿É£®
| 1 |
| 3 |
| 1 |
| 9 |
| 2 |
| 9 |
£¨2£©Éèa1Óëa2Ö®¼ä²åÈëk¸öÊý£¬k¡ÊN£¬ÇÒk¡Üm£¬ÔòÔÚa2Óëa3Ö®¼ä²åÈ루m-k£©¸öÊý£¬ÓÉÌõ¼þÕâµÈ²îÊýÁеÚÒ»ÏîΪa1=1£¬µÚk+2ÏîΪa2=q£¬µÚm+3ÏîΪa2=q2£¬Áгö·½³Ì£¬¼´¿ÉÇ󹫱ÈqµÄËùÓпÉÄÜȡֵµÄ¼¯ºÏ£»
£¨3£©µ±ÇÒ½öµ±q¡ÊN£¬ÇÒq¡Ý2ʱ£¬ÔÚÊýÁÐ{an}µÄÿÏàÁÚÁ½Ïîak£¬ak+1Ö®¼ä²åÈëck£¨k¡ÊN*£¬ck¡ÊN£©¸öÊý£¬Ê¹Ö®³ÉΪһ¸öµÈ²îÊýÁУ¬ÔÙ½øÐÐÖ¤Ã÷¼´¿É£®
½â´ð£º
½â£º£¨1£©ÓÉÌõ¼þµÃ1£¬b1£¬b2£¬¡bk£¬
£¬
³ÉµÈ²îÊýÁУ¬
ËùÒÔ¹«²îd=-
£¬k=2£¬
ËùÒÔÕâ2¸öÊýΪ£ºb1=
£¬b2=
£» ¡£¨2·Ö£©
£¨2£©Éèa1Óëa2Ö®¼ä²åÈëk¸öÊý£¬k¡ÊN£¬ÇÒk¡Üm£¬ÔòÔÚa2Óëa3Ö®¼ä²åÈ루m-k£©¸öÊý£¬
ÓÉÌõ¼þÕâµÈ²îÊýÁеÚÒ»ÏîΪa1=1£¬µÚk+2ÏîΪa2=q£¬µÚm+3ÏîΪa2=q2£¬
ËùÒÔ
=
£¬q¡Ù1£¬
ËùÒÔq=
£¬ÇÒ k¡Ù
£»
ËùÒÔ¹«±ÈqµÄËùÓпÉÄܵÄȡֵµÄ¼¯ºÏ{ q|q=
£¬k¡ÊN£¬k¡ÜmÇÒk¡Ù
}£»¡£¨6·Ö£©
£¨3£©µ±ÇÒ½öµ±q¡ÊN£¬ÇÒq¡Ý2ʱ£¬ÔÚÊýÁÐ{an}µÄÿÏàÁÚÁ½Ïîak£¬ak+1Ö®¼ä²åÈëck£¨k¡ÊN*£¬ck¡ÊN£©¸öÊý£¬Ê¹Ö®³ÉΪһ¸öµÈ²îÊýÁУ»
Ö¤Ã÷ÈçÏ£º
£¨i£©µ±q¡ÊN£¬ÇÒq¡Ý2ʱ£¬Ð¹¹³ÉµÄµÈ²îÊýÁпÉÒÔÊÇÕýÕûÊýÊýÁÐ1£¬2£¬3£¬¡£¬ÏÔÈ»Âú×ãÌõ¼þ£» ¡£¨8·Ö£©
£¨ii£© ÈôÔÚÊýÁÐ{an}µÄÿÏàÁÚÁ½Ïîak£¬ak+1Ö®¼ä²åÈëck£¨k¡ÊN*£¬ck¡ÊN£©¸öÊý£¬Ê¹Ö®³ÉΪһ¸öµÈ²îÊýÁУ¬Õâ¸öµÈ²îÊýÁÐÉèΪ{bn}£¬Ôò¶ÔÓÚÈÎÒâµÄk¡ÊN*£¬¶¼ÓÐ
=
£¬
¼´
=
£¬q¡Ù1ÇÒq¡Ù0£¬
ËùÒÔq=
£¬ck+1£¬ck¡ÊN£¬
ËùÒÔqΪÕýÓÐÀíÊý£¬{an}ΪÕýÏîÎÞÇîµÈ±ÈÊýÁУ¬
Èôq²»ÎªÕûÊý£¬²»·ÁÉèq=
£¬ÆäÖÐp£¬t¡ÊN*£¬pÓët»¥ÖÊ£¬ÇÒp¡Ý2£¬
µÈ²îÊýÁÐ{bn}µÄ¹«²îΪd=
=
£¬Í¨ÏîΪbn=1+£¨n-1£©
£»
ÔòÊýÁÐ{£¨c1+1£©pbn}µÄ¸÷ÏΪÕûÊý£¬
Ôò¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬£¨c1+1£©p an¡ÊN*£¬
¼´¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬£¨c1+1£©p£¨
£©n-1¡ÊN*£¬
¼´ÓÚÈÎÒâµÄn¡ÊN*£¬ÓÉpÓët»¥ÖÊ£¬Ôò£¨c1+1£©p¶¼Äܱ»pn-1Õû³ý£¬p¡Ý2£¬ÇÒp¡ÊN*£¬
ÕâÊDz»¿ÉÄܵģ¬
ËùÒÔqΪÕýÕûÊý£¬ÓÖq¡Ù1£¬
ËùÒÔq¡ÊN£¬ÇÒq¡Ý2£» ¡£¨12·Ö£©
µ±q¡ÊN£¬ÇÒq¡Ý2ʱ£¬
¶ÔÓÚÊ×ÏîΪ1£¬µÚ£¨c1+1£©ÏîΪqµÄµÈ²îÊýÁÐ{bn}£¬Ôò¹«²îd=
£¬
Áîan=bm£¬¼´q n-1=1+£¨m-1£©
£¨n¡ÊN*£©£¬
ÓÐm=£¨c1+1£©
+1¡ÊN*£¬
ËùÒÔanÊÇ{bn}ÖеĵÚ[£¨c1+1£©
+1]Ï
ËùÒÔc1µÄËùÓпÉÄÜÖµµÄ¼¯ºÏÊÇ×ÔÈ»Êý¼¯N£» ¡£¨14·Ö£©
¶ÔÓÚÈÎÒâµÄ×ÔÈ»Êýc1£¬
ÓÉ
=q£¬q¡ÊN£¬n¡ÊN*ÇÒq¡Ý2Öª{cn+1}ÊÇÊ×ÏîΪc1+1£¬¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬
ËùÒÔ{cn}µÄͨÏʽΪcn=£¨c1+1£©qn-1-1£® ¡£¨16·Ö£©
| 1 |
| 3 |
| 1 |
| 9 |
ËùÒÔ¹«²îd=-
| 2 |
| 9 |
ËùÒÔÕâ2¸öÊýΪ£ºb1=
| 7 |
| 9 |
| 5 |
| 9 |
£¨2£©Éèa1Óëa2Ö®¼ä²åÈëk¸öÊý£¬k¡ÊN£¬ÇÒk¡Üm£¬ÔòÔÚa2Óëa3Ö®¼ä²åÈ루m-k£©¸öÊý£¬
ÓÉÌõ¼þÕâµÈ²îÊýÁеÚÒ»ÏîΪa1=1£¬µÚk+2ÏîΪa2=q£¬µÚm+3ÏîΪa2=q2£¬
ËùÒÔ
| q-1 |
| k+1 |
| q2-q |
| m-k+1 |
ËùÒÔq=
| m-k+1 |
| k+1 |
| m |
| 2 |
ËùÒÔ¹«±ÈqµÄËùÓпÉÄܵÄȡֵµÄ¼¯ºÏ{ q|q=
| m-k+1 |
| k+1 |
| m |
| 2 |
£¨3£©µ±ÇÒ½öµ±q¡ÊN£¬ÇÒq¡Ý2ʱ£¬ÔÚÊýÁÐ{an}µÄÿÏàÁÚÁ½Ïîak£¬ak+1Ö®¼ä²åÈëck£¨k¡ÊN*£¬ck¡ÊN£©¸öÊý£¬Ê¹Ö®³ÉΪһ¸öµÈ²îÊýÁУ»
Ö¤Ã÷ÈçÏ£º
£¨i£©µ±q¡ÊN£¬ÇÒq¡Ý2ʱ£¬Ð¹¹³ÉµÄµÈ²îÊýÁпÉÒÔÊÇÕýÕûÊýÊýÁÐ1£¬2£¬3£¬¡£¬ÏÔÈ»Âú×ãÌõ¼þ£» ¡£¨8·Ö£©
£¨ii£© ÈôÔÚÊýÁÐ{an}µÄÿÏàÁÚÁ½Ïîak£¬ak+1Ö®¼ä²åÈëck£¨k¡ÊN*£¬ck¡ÊN£©¸öÊý£¬Ê¹Ö®³ÉΪһ¸öµÈ²îÊýÁУ¬Õâ¸öµÈ²îÊýÁÐÉèΪ{bn}£¬Ôò¶ÔÓÚÈÎÒâµÄk¡ÊN*£¬¶¼ÓÐ
| ak+1-ak |
| ck+1 |
| ak+2-ak+1 |
| ck+1+1 |
¼´
| qk-qk-1 |
| ck+1 |
| qk+1-qk |
| ck+1+1 |
ËùÒÔq=
| ck+1+1 |
| ck+1 |
ËùÒÔqΪÕýÓÐÀíÊý£¬{an}ΪÕýÏîÎÞÇîµÈ±ÈÊýÁУ¬
Èôq²»ÎªÕûÊý£¬²»·ÁÉèq=
| t |
| p |
µÈ²îÊýÁÐ{bn}µÄ¹«²îΪd=
| p |
| c1+1 |
| t-p |
| (c1+1)p |
| t-p |
| (c1+1)p |
ÔòÊýÁÐ{£¨c1+1£©pbn}µÄ¸÷ÏΪÕûÊý£¬
Ôò¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬£¨c1+1£©p an¡ÊN*£¬
¼´¶ÔÓÚÈÎÒâµÄn¡ÊN*£¬£¨c1+1£©p£¨
| t |
| p |
¼´ÓÚÈÎÒâµÄn¡ÊN*£¬ÓÉpÓët»¥ÖÊ£¬Ôò£¨c1+1£©p¶¼Äܱ»pn-1Õû³ý£¬p¡Ý2£¬ÇÒp¡ÊN*£¬
ÕâÊDz»¿ÉÄܵģ¬
ËùÒÔqΪÕýÕûÊý£¬ÓÖq¡Ù1£¬
ËùÒÔq¡ÊN£¬ÇÒq¡Ý2£» ¡£¨12·Ö£©
µ±q¡ÊN£¬ÇÒq¡Ý2ʱ£¬
¶ÔÓÚÊ×ÏîΪ1£¬µÚ£¨c1+1£©ÏîΪqµÄµÈ²îÊýÁÐ{bn}£¬Ôò¹«²îd=
| q-1 |
| c1+1 |
Áîan=bm£¬¼´q n-1=1+£¨m-1£©
| q-1 |
| c1+1 |
ÓÐm=£¨c1+1£©
| qn-1-1 |
| q-1 |
ËùÒÔanÊÇ{bn}ÖеĵÚ[£¨c1+1£©
| qn-1-1 |
| q-1 |
ËùÒÔc1µÄËùÓпÉÄÜÖµµÄ¼¯ºÏÊÇ×ÔÈ»Êý¼¯N£» ¡£¨14·Ö£©
¶ÔÓÚÈÎÒâµÄ×ÔÈ»Êýc1£¬
ÓÉ
| cn+1+1 |
| cn+1 |
ËùÒÔ{cn}µÄͨÏʽΪcn=£¨c1+1£©qn-1-1£® ¡£¨16·Ö£©
µãÆÀ£º±¾Ì⿼²éµÄÊÇÊýÁеÄÓ¦Ó㬿¼²éµÈ²îÊýÁÐÓëµÈ±ÈÊýÁеÄ×ۺϣ¬¿¼²é·´Ö¤·¨Ë¼ÏëµÄÔËÓã¬ÄѶȴó£¬Ñ§ÉúºÜÄѽâ¾ö£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÉèÈ«¼¯U={x¡ÊZ|
¡Ý1}£¬M¡ÉN={1£¬2}£¬∁U£¨M¡ÈN£©={0}£¬£¨∁UM£©¡ÉN={4£¬5}£¬ÔòM=£¨¡¡¡¡£©
| 6 |
| x+1 |
| A¡¢{1£¬2£¬3} |
| B¡¢{-1£¬1£¬2£¬3} |
| C¡¢{1£¬2} |
| D¡¢{-1£¬1£¬2} |
ÒÑÖª
=1-i£¬ÆäÖÐx£¬y¡ÊR£¬iΪÐéÊýµ¥Î»£¬Ôòx+yi=£¨¡¡¡¡£©
| x |
| 1+yi |
| A¡¢1+2i | B¡¢1-2i |
| C¡¢2+i | D¡¢2-i |