题目内容
5.已知定点A(-4,0)及椭圆C:x2+3y2=6,直线MN经过椭圆C的右焦点,当M、N在椭圆C上运动时,△MNA的面积的最大值为3$\sqrt{3}$.分析 设直线MN方程为:x=my+2,由 $\left\{\begin{array}{l}{x=my+2}\\{{x}^{2}+3{y}^{2}=6}\end{array}\right.$得(m2+3)y2+4my-2=0,可得△MNA的面积s=$\frac{1}{2}×AF×$|y1-y2|=3$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{6\sqrt{6}\sqrt{{m}^{2}+1}}{{m}^{2}+3}=\frac{6\sqrt{6}\sqrt{{m}^{2}+1}}{{m}^{2}+1+2}$=$\frac{6\sqrt{6}}{\sqrt{{m}^{2}+1}+\frac{2}{\sqrt{{m}^{2}+1}}}$$≤\frac{6\sqrt{6}}{2\sqrt{2}}=3\sqrt{3}$
解答
解:∵椭圆C:x2+3y2=6的右焦点为(2,0),故设直线MN方程为:x=my+2,
由 $\left\{\begin{array}{l}{x=my+2}\\{{x}^{2}+3{y}^{2}=6}\end{array}\right.$得(m2+3)y2+4my-2=0,
${y}_{1}+{y}_{2}=\frac{-4m}{{m}^{2}+3}$,${y}_{1}{y}_{2}=\frac{-2}{{m}^{2}+3}$,
,△MNA的面积s=$\frac{1}{2}×AF×$|y1-y2|=3$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\frac{6\sqrt{6}\sqrt{{m}^{2}+1}}{{m}^{2}+3}=\frac{6\sqrt{6}\sqrt{{m}^{2}+1}}{{m}^{2}+1+2}$=$\frac{6\sqrt{6}}{\sqrt{{m}^{2}+1}+\frac{2}{\sqrt{{m}^{2}+1}}}$$≤\frac{6\sqrt{6}}{2\sqrt{2}}=3\sqrt{3}$,
当m=±1时,△MNA的面积的有最大值为3$\sqrt{3}$,
故答案为:3$\sqrt{3}$.
点评 本题考查了椭圆与直线的位置关系,三角形面积计算,属于中档题.
| A. | 1 | B. | 2 | C. | 3 | D. | 2或3 |
| A. | $\frac{a^2}{2}$ | B. | $\frac{{\sqrt{6}}}{4}{a^2}$ | C. | $\frac{{\sqrt{3}}}{4}{a^2}$ | D. | $\frac{{\sqrt{3}}}{2}{a^2}$ |
| A. | E(η)=5,D(ξ)=3 | B. | E(η)=3,D(ξ)=27 | C. | E(η)=9,D(ξ)=81 | D. | E(η)=5,D(ξ)=1 |
表1:48名师傅生产的产品精度统计表(单位:个)
| 类别 | 达到精品级 | 未达到精品级 | 总计 |
| 高级技工 | 22 | 6 | 28 |
| 中级技工 | 10 | 10 | 20 |
| 总计 | 32 | 16 | 48 |
| $\overline{n}$=$\frac{1}{6}$$\sum_{i=1}^{6}{n}_{i}$ | $\overline{t}$=$\frac{1}{6}$$\sum_{i=1}^{6}{t}_{i}$ | $\sum_{i=1}^{6}{n}_{i}$ 2 | $\sum_{i=1}^{6}{t}_{i}$ 2 | $\sum_{i=1}^{6}{n}_{i}{t}_{i}$ | $\sum_{i=1}^{6}$(ni-$\overline{n}$)2 | $\sum_{i=1}^{6}$(ti-$\overline{t}$)2 | $\sum_{i=1}^{6}$(ni-$\overline{n}$)(ti-$\overline{t}$) |
| 4.5 | 4.125 | 139 | 109.562 | 112.75 | 17.5 | 7.468 | 11.375 |
(2)根据散点图判断t与n是否具有线性相关关系?若具有,依据表中数据求出t关于n的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,并预测该师傅加工10个零件需要多少时间?
附:(1)参考临界值有:
参考公式:K2=$\frac{m(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中m=a+b+c+d.
(2)对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归线$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$的斜率和截距的最小二乘估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
| A. | 5 | B. | 4 | C. | 3 | D. | 2 |
| A. | (-∞,$\frac{9}{4}$] | B. | [0,2] | C. | [0,3] | D. | [0,$\frac{9}{4}$] |