题目内容
10.函数$f(x)={log_2}({3^x}-1)$的定义域为(0,+∞).分析 根据对数函数的性质求出函数的定义域即可.
解答 解:由题意得:
3x-1>0,解得:x>0,
故答案为:(0,+∞).
点评 本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.
练习册系列答案
相关题目
18.已知全集U={1,2,3,4,5,6,7},A={1,2,3,4},B={3,4,5,6,7},则A∩(∁UB)=( )
| A. | {1,2} | B. | {3,4} | C. | {5,6,7} | D. | ∅ |
15.设a>0,b>0,若1是2a与2b的等差中项,则$\frac{1}{a}$+$\frac{1}{b}$的最小值为( )
| A. | 8 | B. | 4 | C. | 1 | D. | $\frac{1}{4}$ |
2.
如图,在矩形ABCD中,M是BC的中点,N是CD的中点,若$\overrightarrow{AC}$=λ$\overrightarrow{AM}$+μ$\overrightarrow{BN}$,则λ+μ=( )
| A. | $\frac{2}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{6}{5}$ | D. | $\frac{8}{5}$ |