题目内容

前不久,省社科院发布了2013年度“安徽城市居民幸福排行榜”,芜湖市成为本年度安徽最“幸福城”.随后,师大附中学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(Ⅰ)指出这组数据的众数和中位数;
(Ⅱ)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
(Ⅲ)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“极幸福”的人数,求ξ的分布列及数学期望.
考点:离散型随机变量的期望与方差,茎叶图
专题:概率与统计
分析:(1)根据所给的茎叶图看出16个数据,找出众数和中位数,中位数需要按照从小到大的顺序排列得到结论.
(2)由题意知本题是一个古典概型,至多有1人是“极幸福”包括有一个人是极幸福和有零个人是极幸福,根据古典概型公式得到结果.
(3)由于从该社区任选3人,记ξ表示抽到“极幸福”学生的人数,得到变量的可能取值是0、1、2、3,结合变量对应的事件,算出概率,写出分布列和期望.
解答: 解:(Ⅰ)众数:8.6;中位数:8.75;                                      
(Ⅱ)设Ai表示所取3人中有i个人是“极幸福”,至多有1人是“极幸福”记为事件A,则P(A)=P(A0)+P(A1)=
C
3
12
C
3
16
+
C
1
4
C
2
12
C
3
16
=
121
140
;                      
(Ⅲ)ξ的可能取值为0,1,2,3.
P(ξ=0)=(
3
4
)3=
27
64
P(ξ=1)=
C
1
3
1
4
(
3
4
)2=
27
64

P(ξ=2)=
C
2
3
(
1
4
)2
3
4
=
9
64
P(ξ=3)=(
1
4
)3=
1
64

则ξ的分布列为:
ξ 0 1 2 3
P
27
64
27
64
9
64
1
64
所以Eξ=
27
64
+1×
27
64
+2×
9
64
+3×
1
64
=0.75

另解:ξ的可能取值为0,1,2,3.
则ξ~B(3,
1
4
),P(ξ=k)=
C
k
3
(
1
4
)k(
3
4
)3-k
.所以Eξ=
1
4
=0.75
点评:本题是一个统计综合题,对于一组数据,通常要求的是这组数据的众数,中位数,平均数,题目分别表示一组数据的特征,这样的问题可以出现在选择题或填空题,考查最基本的知识点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网