题目内容

已知cos(α-
β
2
)=-
1
3
,sin(
α
2
-β)=
2
3
,且0<β<
π
2
<α<π.
(1)求cos(2α-β)的值;
(2)求sin
α+β
2
的值.
考点:二倍角的余弦,两角和与差的正弦函数
专题:三角函数的求值
分析:(1)由条件利用二倍角的余弦公式求得cos(2α-β)的值.
(2)由条件利用同角三角函数的基本关系求得,sin(α-
β
2
)=
2
2
3
cos(
α
2
-β)=
5
3
,再利用两角和的正弦公式求得sin
α+β
2
的值.
解答: 解:(1)cos(2α-β)=cos[2(α-
β
2
)]=2cos2(α-
β
2
)-1=-
7
9

(2)∵0<β<
π
2
<α<π
,∴α-
β
2
∈(
π
4
,π)
α
2
-β∈(-
π
4
π
2
)

又∵cos(α-
β
2
)=-
1
3
,sin(
α
2
-β)=
2
3
,∴sin(α-
β
2
)=
2
2
3
cos(
α
2
-β)=
5
3

sin(
α+β
2
)=sin[(α-
β
2
)-(
α
2
-β)]
=sin(α-
β
2
)cos(
α
2
-β)-cos(α-
β
2
)sin(
α
2
-β)
=
2
2
3
×
5
3
-(-
1
3
)×
2
3
=
2
10
+2
9
点评:本题主要考查同角三角函数的基本关系、二倍角公式、两角和的正弦公式的应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网