题目内容
已知等差数列{an}的公差d≠0,首项a1=3,且a1、a4、a13成等比数列,设数列{an}的前n项和为Sn(n∈N+).
(1)求an和Sn;
(2)若bn=
,数列{bn}的前n项和Tn.求证:3≤Tn<24
.
(1)求an和Sn;
(2)若bn=
|
| 11 |
| 60 |
考点:数列的求和,等差数列的性质
专题:综合题,等差数列与等比数列
分析:(1)由a1、a4、a13成等比数列可得关于d的方程,解出d,利用等差数列的通项公式、前n项和公式可得结果;
(2)先求出bn,然后分n≤4,n≥5两种情况进行讨论求得Tn,由Tn的性质可证;
(2)先求出bn,然后分n≤4,n≥5两种情况进行讨论求得Tn,由Tn的性质可证;
解答:
解:(1)∵{an}是等差数列,a1=3,公差为d,
∴a4=3+3d,a13=3+12d,
∵a1、a4、a13成等比数列,
∴(3+3d)2=3(3+12d),
整理得d2-2d=0,∵差d≠0,∴d=2,
∴an=3+(n-1)×2=2n+1,Sn=
=n(n+2).
(2)∵Sn-3an=n(n+2)-3(2n+1)=n2-4n-3=(n+
-2)(n-
-2),
∵n∈N+,由Sn≤3an,得n≤2+
,由Sn>3an,得n>2+
.
∵4<2+
<5,∴bn=
,
当n≤4时,Tn=Sn=n(n+2);
当n≥5时,Tn=T4+[
+
+
+…+
+
]
=24+
[(
-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=24+
(
+
-
-
)=24
-
,
∴Tn<24
,
又数列{Tn}为递增数列,
∴Tn≥T1=3,
∴3≤Tn<24
.
∴a4=3+3d,a13=3+12d,
∵a1、a4、a13成等比数列,
∴(3+3d)2=3(3+12d),
整理得d2-2d=0,∵差d≠0,∴d=2,
∴an=3+(n-1)×2=2n+1,Sn=
| n(3+2n+1) |
| 2 |
(2)∵Sn-3an=n(n+2)-3(2n+1)=n2-4n-3=(n+
| 7 |
| 7 |
∵n∈N+,由Sn≤3an,得n≤2+
| 7 |
| 7 |
∵4<2+
| 7 |
|
当n≤4时,Tn=Sn=n(n+2);
当n≥5时,Tn=T4+[
| 1 |
| 5×7 |
| 1 |
| 6×8 |
| 1 |
| 7×9 |
| 1 |
| (n-1)(n+1) |
| 1 |
| n(n+2) |
=24+
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 6 |
| 1 |
| 8 |
| 1 |
| 7 |
| 1 |
| 9 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=24+
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 11 |
| 60 |
| 2n+3 |
| 2(n+1)(n+2) |
∴Tn<24
| 11 |
| 60 |
又数列{Tn}为递增数列,
∴Tn≥T1=3,
∴3≤Tn<24
| 11 |
| 60 |
点评:该题考查等差数列的通项公式、求和公式,考查分类讨论思想,裂项相消法是常用的求和方法,要熟练掌握.
练习册系列答案
相关题目