ÌâÄ¿ÄÚÈÝ
9£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-t\\ y=\sqrt{3}t\end{array}\right.$£¨tΪ²ÎÊý£¬-1¡Üt¡Ü1£©£¬µ±t=1ʱ£¬ÇúÏßC1ÉϵĵãΪA£¬µ±t=-1ʱ£¬ÇúÏßC1ÉϵĵãΪB£¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÇúÏßC2µÄ¼«×ø±ê·½³Ì$¦Ñ=\frac{6}{{\sqrt{4+5{{sin}^2}¦È}}}$£¨¢ñ£© ÇóÏß¶ÎABµÄ¼«×ø±ê·½³Ì£»C2µÄ²ÎÊý·½³Ì
£¨¢ò£© ÉèMÊÇÇúÏßC2Éϵ͝µã£¬Çó|MA|2+|MB|2×î´óÖµ¼°È¡×î´óֵʱµãMµÄÖ±½Ç×ø±ê£®
·ÖÎö £¨¢ñ£©Çó³öA$£¨-1£¬\sqrt{3}£©£¬B£¨1£¬-\sqrt{3}£©$£¬´Ó¶øÇó³öÏßÈ˶ÎABµÄÖ±½Ç×ø±ê·½³Ì£¬½ø¶øÄÜÇó³öÏß¶ÎABµÄ¼«×ø±ê·½³Ì£»ÇúÏßC2µÄ¼«×ø±ê·½³Ìת»¯Îª4¦Ñ2+5£¨¦Ñsin¦È£©2=36£¬ÓÉ´ËÄÜÇó³öÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£¬´Ó¶øÄÜÇó³öÇúÏßC2µÄ²ÎÊý·½³Ì£®
£¨¢ò£©ÉèÇúÏßC2Éϵ͝µãM£¨3cos¦Á£¬2sin¦Á£©£¬´Ó¶ø|MA|2+|MB|2=£¨3cos¦Á+1£©2+£¨2sin¦Á-$\sqrt{3}$£©2+£¨3 cos¦Á-1£©2+£¨2sin¦Á+$\sqrt{3}$£©2=10cos2¦Á+16¡Ü26£¬ÓÉ´ËÄÜÇó³ö|MA|2+|MB|2µÄ×î´óÖµ¼°¶ÔÓ¦µÄMµã×ø±ê£®
½â´ð ½â£º£¨¢ñ£©¡ßÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-t\\ y=\sqrt{3}t\end{array}\right.$£¨tΪ²ÎÊý£¬-1¡Üt¡Ü1£©£¬
µ±t=1ʱ£¬ÇúÏßC1ÉϵĵãΪA£¬µ±t=-1ʱ£¬ÇúÏßC1ÉϵĵãΪB£¬
¡àA$£¨-1£¬\sqrt{3}£©£¬B£¨1£¬-\sqrt{3}£©$£¬
¡àÏß¶ÎABµÄÖ±½Ç×ø±ê·½³ÌΪ£º$\frac{y+\sqrt{3}}{x-1}$=$\frac{\sqrt{3}+\sqrt{3}}{-1-1}$=-$\sqrt{3}$£¬£¨-1¡Üx¡Ü1£©£¬
ÕûÀí£¬µÃ£º$\sqrt{3}x+y=0$£¬£¨-1¡Üx¡Ü1£©£¬
¡àÏß¶ÎABµÄ¼«×ø±ê·½³ÌΪ$\sqrt{3}¦Ñcos¦È$+¦Ñsin¦È=0£¬¼´2sin£¨$¦È+\frac{¦Ð}{3}$£©=0£¬£¨¦È¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{2¦Ð}{3}$]£©£®
¡ßÇúÏßC2µÄ¼«×ø±ê·½³Ì$¦Ñ=\frac{6}{{\sqrt{4+5{{sin}^2}¦È}}}$£¬»¯Îª¦Ñ2£¨4+5sin2¦È£©=36£¬
¡à4¦Ñ2+5£¨¦Ñsin¦È£©2=36£¬
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪ4£¨x2+y2£©+5y2=36£¬»¯Îª$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1£¬
¡àÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3cos¦Á}\\{y=2sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£©£®
£¨¢ò£©ÉèÇúÏßC2Éϵ͝µãM£¨3cos¦Á£¬2sin¦Á£©£¬
¡ßA£¨-1£¬$\sqrt{3}$£©£¬B£¨1£¬-$\sqrt{3}$£©£¬
|MA|2+|MB|2=£¨3cos¦Á+1£©2+£¨2sin¦Á-$\sqrt{3}$£©2+£¨3 cos¦Á-1£©2+£¨2sin¦Á+$\sqrt{3}$£©2
=18cos2¦Á+8sin2¦Á+8=10cos2¦Á+16¡Ü26£¬µ±cos¦Á=¡À1ʱ£¬È¡µÃ×î´óÖµ26£®
¡à|MA|2+|MB|2µÄ×î´óÖµÊÇ26£¬´ËʱM£¨3£¬0£©£¬£¨-3£¬0£©£®
µãÆÀ ±¾Ì⿼²éÏ߶εļ«×ø±ê·½³Ì¡¢ÇúÏߵIJÎÊý·½³ÌÇ󷨣¬¿¼²é´úÊýʽµÄ×î´óÖµµÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮
| A£® | $\frac{{\sqrt{3}}}{2}$ | B£® | $\frac{{\sqrt{3}-1}}{2}$ | C£® | $\frac{{3-\sqrt{5}}}{2}$ | D£® | $\frac{{\sqrt{5}-1}}{2}$ |
| A£® | $£¨-¡Þ£¬\frac{2}{3}£©$ | B£® | $£¨-¡Þ£¬\frac{1}{2}]$ | C£® | $£¨0£¬\frac{2}{3}£©$ | D£® | $£¨0£¬\frac{1}{2}]$ |
| A£® | [1£¬+¡Þ£© | B£® | £¨0£¬1] | C£® | [$\frac{1}{2}$£¬+¡Þ£© | D£® | £¨0£¬$\frac{1}{2}$] |
| A£® | 1+3i | B£® | 1-3i | C£® | 3-i | D£® | 3+i |