题目内容

山区一林场2013年底的木材存量为30万立方米,森林以每年20%的增长率生长.从今年起每年年底要砍伐1万立方米的木材,设从今年起的第n年底的木材存量为an万立方米.
(Ⅰ)试写出an+1与an的关系式,并证明数列{an-5}是等比数列;
(Ⅱ)问大约经过多少年,林场的木材总存量达到125万立方米?(参考数据:lg2=0.30,lg3=0.48)
考点:数列的应用
专题:等差数列与等比数列
分析:(Ⅰ)由题得an+1=an×(1+20%)-1,由此能数列{an-5}是公比为
6
5
的等比数列,由此能写出an+1与an的关系式,并证明数列{an-5}是等比数列.
(Ⅱ)由a1-5=30×(1+20%)-1-5=30,得an=30(
6
5
)n-1+5
,由此能求出大约经过9年,林场的木材总存量达到125万立方米.
解答: 解:(Ⅰ)由题得an+1=an×(1+20%)-1
an+1=
6
5
an-1
…2分
所以
an+1-5
an-5
=
6
5
an-6
an-5
=
6
5

因此数列{an-5}是公比为
6
5
的等比数列  …6分
(Ⅱ)由题a1-5=30×(1+20%)-1-5=30
所以an-5=30(
6
5
)n-1
,即an=30(
6
5
)n-1+5
…8分
所以an=30(
6
5
)n-1+5≥125
,即(
6
5
)n-1≥4
(n-1)lg
6
5
≥lg4

所以n>
2lg2
2lg2+lg3-1
+1=8.5

所以,大约经过9年,林场的木材总存量达到125万立方米.…12分.
点评:本题考查数列知识在生产生活中的实际应用,是中档题,解题时要注意等比数列性质的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网