题目内容

若a1=12,a2=12+22+12,…,an=12+22+…+n2+…+22+12,在运用数学归纳法证明an=
1
3
n(2n2+1)时,第二步中从k到k+1应添加的项是(  )
A、k2+1
B、(k2+1)2
C、(k+1)2+k2
D、(k+1)2+2k2
考点:数学归纳法
专题:计算题,点列、递归数列与数学归纳法
分析:ak=12+22+…+k2+…+22+12,ak+1=12+22+…+k2+(k+1)2+k2+…+22+12,即可得出结论.
解答: 解:∵ak=12+22+…+k2+…+22+12,ak+1=12+22+…+k2+(k+1)2+k2+…+22+12
∴在运用数学归纳法证明an=
1
3
n(2n2+1)时,第二步中从k到k+1应添加的项是(k+1)2+k2
故选:C.
点评:本题考查数学归纳法的运用,考查学生分析解决问题的能力,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网