题目内容
8.| A. | 8+16π | B. | 8+8π | C. | 16+16π | D. | 16+8π |
分析 几何体上部为长方体,下部为半圆柱,根据三视图得出长方体棱长和半圆柱的半径与高,代入体积公式计算即可.
解答 解:几何体上部为长方体,边长分别为2,2,4,
几何体的下部为半圆柱,半圆柱的高为4,半径为2,
∴几何体的体积V=2×2×4+$\frac{1}{2}$×π×22×4=16+8π.
故选D.
点评 本题考查了棱柱与圆柱的三视图和体积计算,属于中档题.
练习册系列答案
相关题目
18.已知两点A(1,0),B(1,$\sqrt{3}$),O为坐标原点,点C在第二象限,且∠AOC=150°,设$\overrightarrow{OC}$=2$\overrightarrow{OA}$+λ$\overrightarrow{OB}$(λ∈R),则λ=( )
| A. | -1 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 1 |
19.已知集合A={x|log3(2x-1)≤0},$B=\{x|y=\sqrt{3{x^2}-2x}\}$,全集U=R,则A∩(∁UB)等于( )
| A. | $(\frac{1}{2},1]$ | B. | $(0,\frac{2}{3})$ | C. | $(\frac{2}{3},1]$ | D. | $(\frac{1}{2},\frac{2}{3})$ |
13.某地区2012年至2016年农村居民家庭人均纯收入y(单位:千元)的数据如表:
(1)求y关于t的线性回归方程;
(2)利用(1)中的回归方程,分析2012年至2016年该地区农村居民家庭人均纯收入的变化情况,并预测该地区农村居民家庭人均纯收入在哪一年约为10.8千元.
附:回归直线的斜率和截距的最小二乘估计公式分别为$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})2}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$.
| 年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 年份代号t | 1 | 2 | 3 | 4 | 5 |
| 人均纯收入y | 5 | 6 | 7 | 8 | 10 |
(2)利用(1)中的回归方程,分析2012年至2016年该地区农村居民家庭人均纯收入的变化情况,并预测该地区农村居民家庭人均纯收入在哪一年约为10.8千元.
附:回归直线的斜率和截距的最小二乘估计公式分别为$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})2}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{t}$.
17.若$sinθ=\frac{3}{5}$,且θ是第二象限角,则cosθ=( )
| A. | $-\frac{4}{5}$ | B. | $\frac{4}{5}$ | C. | $-\frac{3}{4}$ | D. | $\frac{3}{4}$ |
18.已知tanα=2,α∈(0,π),则cos($\frac{9π}{2}$+2α)等于( )
| A. | $\frac{3}{4}$ | B. | $\frac{2}{5}$ | C. | -$\frac{2}{5}$ | D. | -$\frac{4}{5}$ |