题目内容

8.甲、乙、丙、丁四个物体同时从同一点出发向同一个方向运动,其路程fi(x)(i=1,2,3,4},关于时间x(x≥0)的函数关系式分别为f1(x)=2x-1,f2(x)=x3,f3(x)=x,f4(x)=log2(x+1),有以下结论:
①当x>1时,甲走在最前面;
②当x>1时,乙走在最前面;
③当0<x<1时,丁走在最前面,当x>1时,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲
其中,不正确的序号为(  )
A.①②B.①②③④C.③④⑤D.②③④⑤

分析 根据指数型函数,幂函数,一次函数以及对数型函数的增长速度便可判断每个结论的正误,从而可写出正确结论的序号.

解答 解:路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为:
f1(x)=2x-1,f2(x)=x3,f3(x)=x,f4(x)=log2(x+1),
它们相应的函数模型分别是指数型函数,幂函数,一次函数,和对数型函数模型;
①当x=2时,f1(2)=3,f2(2)=8,
∴该结论不正确;
②∵指数型的增长速度大于幂函数的增长速度,
∴x>1时,甲总会超过乙的,
∴该结论不正确;
③根据四种函数的变化特点,对数型函数的变化是先快后慢,
当x=1时甲、乙、丙、丁四个物体重合,
从而可知当0<x<1时,丁走在最前面,
当x>1时,丁走在最后面,
∴该结论正确;
④结合对数型和指数型函数的图象变化情况,
可知丙不可能走在最前面,也不可能走在最后面,
∴该结论正确;
⑤指数函数变化是先慢后快,当运动的时间足够长,最前面的动物一定是按照指数型函数运动的物体,即一定是甲物体,
∴该结论正确;
∴正确结论的序号为:③④⑤.
故选:C.

点评 本题考查几种基本初等函数的变化趋势,关键是注意到对数函数、指数函数与幂函数的增长差异,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网