题目内容
15.计算:(1)2log32-log3$\frac{32}{9}+{log_3}$8
(2)${0.001^{-\frac{1}{3}}}-{(\frac{7}{8})^0}+{16^{\frac{3}{4}}}+{(\sqrt{2}•\root{3}{3})^6}$.
分析 (1)利用对数运算法则化简求解即可.
(2)利用有理指数幂的运算法则化简求解即可.
解答 解:(1)原式=$lo{g_3}4-lo{g_3}\frac{32}{9}+lo{g_3}8=lo{g_3}9=2$…(6分)
(2)原式$0.00{1}^{-\frac{1}{3}}-{(\frac{7}{8})}^{0}+1{6}^{\frac{3}{4}}+{(\sqrt{2}•\root{3}{3})}^{6}$=10-1+8+72=89.…(12分)
点评 本题考查对数运算法则以及有理指数幂的运算法则的应用,考查计算能力.
练习册系列答案
相关题目
5.信息时代,学生广泛使用手机,从某校学生中随机抽取200名,这200名学生中上课时间和不上时间都不使用手机的共有37人,这200名学生每天在校使用手机情况如下表:
利用以上数据,将统计的频率视为概率.
(1)求上表中m、n的值;
(2)求该校学生上课时间使用手机的概率.
| 分类 人数(人) 时间 | 一小时以上 | 一小时以内 | 不使用 | 合计 |
| 上课时间 | 23 | 55 | m | 98 |
| 不上课时间 | 17 | 68 | 17 | 102 |
| 合计 | 40 | 123 | n | 200 |
(1)求上表中m、n的值;
(2)求该校学生上课时间使用手机的概率.
4.已知正项等比数列{an}满足a5+a4-a3-a2=8,则a6+a7的最小值为( )
| A. | 4 | B. | 16 | C. | 24 | D. | 32 |
7.某生物产品,每一生产周期成本为10万元,此产品的产量受气候影响、价格受市场影响均具有随机性,且互不影响,其具体情况如表:
(Ⅰ)设X表示1生产周期此产品的利润,求X的分布列;
(Ⅱ)若连续3生产周期,求这3生产周期中至少有2生产周期的利润不少于20万元的概率.
| 产量(吨) | 30 | 50 |
| 概率 | 0.5 | 0.5 |
| 市场价格(万元/吨) | 0.6 | 1 |
| 概率 | 0.4 | 0.6 |
(Ⅱ)若连续3生产周期,求这3生产周期中至少有2生产周期的利润不少于20万元的概率.