题目内容
14.比较下列各组正弦值的大小(1)sin(-$\frac{π}{10}$)>sin(-$\frac{π}{8}$)
(2)sin($\frac{7π}{8}$)<sin($\frac{5π}{8}$)
分析 (1)利用诱导公式化简sin(-$\frac{π}{10}$)、sin(-$\frac{π}{8}$),根据正弦函数的单调性比较大小;
(2)利用诱导公式化简sin($\frac{7π}{8}$)、sin($\frac{5π}{8}$),根据正弦函数的单调性比较大小.
解答 解:(1)sin(-$\frac{π}{10}$)=-sin$\frac{π}{10}$,
sin(-$\frac{π}{8}$)=-sin$\frac{π}{8}$,
且0<$\frac{π}{10}$<$\frac{π}{8}$<$\frac{π}{2}$,
∴sin$\frac{π}{10}$<sin$\frac{π}{8}$,
∴-sin$\frac{π}{10}$>-sin$\frac{π}{8}$,
∴sin(-$\frac{π}{10}$)>sin(-$\frac{π}{8}$);
(2)sin($\frac{7π}{8}$)=sin(π-$\frac{π}{8}$)=sin$\frac{π}{8}$,
sin($\frac{5π}{8}$)=sin(π-$\frac{3π}{8}$)=sin$\frac{3π}{8}$,
且0<$\frac{π}{8}$<$\frac{3π}{8}$<$\frac{π}{2}$,
∴sin$\frac{π}{8}$<sin$\frac{3π}{8}$,
∴sin$\frac{7π}{8}$<sin$\frac{5π}{8}$.
故答案为:(1)>,(2)<.
点评 本题考查了诱导公式以及正弦函数的单调性问题,是基础题.
练习册系列答案
相关题目
8.定义在实数域上的偶函数f(x)对于?x∈R,均满足条件f(x+2)=f(x)+f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若函数y=f(x)-loga(|x|+1)在(0,+∞)上至少有5个零点,则a的取值范围是( )
| A. | (0,$\frac{\sqrt{2}}{2}$) | B. | (0,$\frac{\sqrt{3}}{3}$) | C. | (0,$\frac{\sqrt{5}}{5}$) | D. | (0,$\frac{\sqrt{6}}{6}$) |
5.如图,阴影部分的面积为( )

| A. | 2$\sqrt{3}$ | B. | 2-$\sqrt{3}$ | C. | $\frac{32}{3}$ | D. | $\frac{35}{3}$ |
2.已知复数z=x+(x-a)i,若对任意实数x∈(1,2),恒有|z|>|z+i|,则实数a的取值范围为( )
| A. | $({-∞,\frac{1}{2}}]$ | B. | $({-∞,\frac{1}{2}})$ | C. | $[\frac{5}{2},+∞)$ | D. | $({\frac{3}{2},+∞})$ |
9.某城市理论预测2000年到2004年人口总数与年份的关系如表所示
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(2)此次估计2005年该城市人口总数.
(参考公式:用最小二乘法求线性回归方程系数的公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$)
| 年份200x(年) | 0 | 1 | 2 | 3 | 4 |
| 人口数y(十万) | 5 | 7 | 8 | 11 | 19 |
(2)此次估计2005年该城市人口总数.
(参考公式:用最小二乘法求线性回归方程系数的公式:$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$)