题目内容
5.已知($\sqrt{3}$+i)•z=-i(i是虚数单位),那么复数z对应的点位于复平面内的( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 由复数代数形式的乘除运算化简,求得z的坐标得答案.
解答 解:($\sqrt{3}$+i)•z=-i,
∴($\sqrt{3}$+i)($\sqrt{3}$-i)•z=-i($\sqrt{3}$-i),
∴4z=-1-$\sqrt{3}$i,
∴z=-$\frac{1}{4}$-$\frac{\sqrt{3}}{4}$i,
复数z对应的点的坐标为(-$\frac{1}{4}$,-$\frac{\sqrt{3}}{4}$),位于复平面内的第三象限.
故选:C
点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关题目
13.i为虚数单位,若复数(1+mi)(i+2)是纯虚数,则实数m=( )
| A. | 1 | B. | -1 | C. | $-\frac{1}{2}$ | D. | 2 |
10.过抛物线y2=2px(p>0)的焦点F的直线l,与该抛物线及其准线从上向下依次交于A,B,C三点,若|BC|=3|BF|,且|AF|=3,则该抛物线的标准方程是( )
| A. | y2=2x | B. | y2=3x | C. | y2=4x | D. | y2=6x |
17.
沪昆高速铁路全线2016年12月28日开通运营.途经鹰潭北站的G1421、G1503两列列车乘务组工作人员为了了解乘坐本次列车的乘客每月需求情况,分别在两个车次各随机抽取了100名旅客进行调查,下面是根据调查结果,绘制了月乘车次数的频率分布直方图和频数分布表.
(1)若将频率视为概率,月乘车次数不低于15次的称之为“老乘客”,试问:哪一车次的“老乘客”较多,简要说明理由;
(2)已知在G1503次列车随机抽到的50岁以上人员有35名,其中有10名是“老乘客”,由条件完成2×2列联表,并根据资料判断,是否有90%的把握认为年龄与乘车次数有关,说明理由.
附:随机变量${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d为样本容量)
| 乘车次数分组 | 频数 |
| [0,5) | 15 |
| [5,10) | 20 |
| [10,15) | 25 |
| [15,20) | 24 |
| [20,25) | 11 |
| [25,0] | 5 |
(2)已知在G1503次列车随机抽到的50岁以上人员有35名,其中有10名是“老乘客”,由条件完成2×2列联表,并根据资料判断,是否有90%的把握认为年龄与乘车次数有关,说明理由.
| 老乘客 | 新乘客 | 合计 | |
| 50岁以上 | |||
| 50岁以下 | |||
| 合计 |
| P(k2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
| k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
14.若函数y=2-|x|-k有零点,则实数k的取值范围是( )
| A. | k∈[-1,0) | B. | k∈[0,1] | C. | k∈(0,1] | D. | k∈[0,+∞) |