题目内容

2.函数f(x)=sin(ωx+φ)(其中ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则ω,φ的值为(  )
A.2,$\frac{π}{3}$B.2,-$\frac{π}{3}$C.4,$\frac{π}{3}$D.4,-$\frac{π}{3}$

分析 由图象易知$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,又T=$\frac{2π}{ω}$,可求得ω,再由ω•$\frac{π}{3}$+φ=π即可求得φ.

解答 解:∵$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,
∴T=π,又T=$\frac{2π}{ω}$,ω>0,
∴ω=2;
∴由ω•$\frac{π}{3}$+φ=π,即2•$\frac{π}{3}$+φ=π,解得φ=$\frac{π}{3}$.
故选:A.

点评 本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,关键是通过看图得到$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$,继而可求ω,通过看图得到ω•$\frac{π}{3}$+φ=π,从而可求φ,考查学生读图能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网