题目内容

已知a∥b,M∈a,N∈b,MN⊥a,A∈MN,AM=AN=1,B∈a,C∈b,∠BAC=90°,求△ABC周长的最小值.
考点:三角形中的几何计算
专题:解三角形
分析:设NC=x,由条件以及△ACN∽△BAM可得BM=
1
x
.求出AB、AC、BC的值,再利用基本不等式求得它的最小值.
解答: 解:如图所示:设NC=x,由于∠BAC=90°,可得∠ABM=∠NAC,
∴△ACN∽△BAM,∴
CN
AM
=
AN
BM
,再根据 AM=AN=1,可得
x
1
=
1
BM
,求得BM=
1
x

∴AB=
AM2+BM2
=
1+
1
x2
,AC=
AN2+NC2
=
1+x2
,∴BC=
AB2+AC2
=
1+x2+1+
1
x2

∴△ABC周长为AB+AC+BC=
1+
1
x2
+
1+x2
+
1+x2+1+
1
x2
1+
1
x2
+
1+x2
+
2+2

当且仅当x=1时,等号成立,
故△ABC周长的最小值为2
2
+2.
点评:本题主要考查三角形相似的性质、勾股定理、基本不等式的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网