题目内容

已知tan(2π+α)=-
1
2
,则tan2α=
 
考点:二倍角的正切
专题:三角函数的求值
分析:由条件利用诱导公式求得tanα 的值,再利用二倍角的正切公式求得tan2α 的值.
解答: 解:∵tan(2π+α)=-
1
2
=tanα,则tan2α=
2tanα
1-tan2α
=
2×(-
1
2
)
1-
1
4
=-
4
3

故答案为:-
4
3
点评:本题主要考查诱导公式、二倍角的正切公式的应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网