题目内容

已知Sn是等比数列{an}的公比q>1且Sn是它的前n项的和.若a1+a3=5,S3=7.
(1)求数列{an}的通项公式;
(2)设bn=
5
2
+log2an,求数列{bn}的前n项和Tn
考点:数列的求和,等比数列的通项公式
专题:等差数列与等比数列
分析:解:(1)利用等比数列的通项公式可得a1+a1q2=5,a1+a1q+a1q2=7,解得a1,q.即可得出an
(2)bn=
5
2
+log2an=
5
2
+log22n-1
=n+
3
2
.利用等差数列的前n项和公式可得数列{bn}的前n项和Tn
解答: 解:(1)∵a1+a3=5,S3=7,
a1+a1q2=5,a1+a1q+a1q2=7,
解得a1=1,q=2.
∴an=2n-1
(2)bn=
5
2
+log2an=
5
2
+log22n-1
=n+
3
2

∴数列{bn}的前n项和Tn=
n(
5
2
+n+
3
2
)
2
=
n2+4n
2
点评:本题考查了等差数列与等比数列的通项公式、前n项和公式、对数的运算性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网