题目内容
已知an=n+2,设bn=
,Sn为数列{bn}的前n项和,求证:
≤Sn≤
.
| 2an+1 |
| an(an+1)(an+2) |
| 7 |
| 60 |
| 13 |
| 24 |
考点:数列与不等式的综合,数列的求和
专题:综合题,等差数列与等比数列
分析:bn=
=
+
=
(
-
)+(
-
),求和,即可证明结论.
| 2an+1 |
| an(an+1)(an+2) |
| 1 |
| (n+2)(n+4) |
| 1 |
| (n+3)(n+4) |
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| n+4 |
| 1 |
| n+3 |
| 1 |
| n+4 |
解答:
证明:an=n+2,bn=
=
+
=
(
-
)+(
-
)
∴Sn=
(
-
+
-
+…+
-
)+(
-
+
-
+…+
-
)
=
(
+
-
-
)+(
-
)=
-
-
,
∴n=1时,Sn=
,
∴
≤Sn≤
.
| 2an+1 |
| an(an+1)(an+2) |
| 1 |
| (n+2)(n+4) |
| 1 |
| (n+3)(n+4) |
| 1 |
| 2 |
| 1 |
| n+2 |
| 1 |
| n+4 |
| 1 |
| n+3 |
| 1 |
| n+4 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| n+2 |
| 1 |
| n+4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| n+3 |
| 1 |
| n+4 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+3 |
| 1 |
| n+4 |
| 1 |
| 4 |
| 1 |
| n+4 |
| 13 |
| 24 |
| 1 |
| n+3 |
| 2 |
| n+4 |
∴n=1时,Sn=
| 7 |
| 60 |
∴
| 7 |
| 60 |
| 13 |
| 24 |
点评:本题考查数列的求和,考查数列与不等式的综合,正确求和是关键.
练习册系列答案
相关题目