题目内容

已知an=n+2,设bn=
2an+1
an(an+1)(an+2)
,Sn为数列{bn}的前n项和,求证:
7
60
≤Sn
13
24
考点:数列与不等式的综合,数列的求和
专题:综合题,等差数列与等比数列
分析:bn=
2an+1
an(an+1)(an+2)
=
1
(n+2)(n+4)
+
1
(n+3)(n+4)
=
1
2
1
n+2
-
1
n+4
)+(
1
n+3
-
1
n+4
),求和,即可证明结论.
解答: 证明:an=n+2,bn=
2an+1
an(an+1)(an+2)
=
1
(n+2)(n+4)
+
1
(n+3)(n+4)
=
1
2
1
n+2
-
1
n+4
)+(
1
n+3
-
1
n+4

∴Sn=
1
2
1
3
-
1
5
+
1
4
-
1
6
+…+
1
n+2
-
1
n+4
)+(
1
4
-
1
5
+
1
5
-
1
6
+…+
1
n+3
-
1
n+4

=
1
2
1
3
+
1
4
-
1
n+3
-
1
n+4
)+(
1
4
-
1
n+4
)=
13
24
-
1
n+3
-
2
n+4

∴n=1时,Sn=
7
60

7
60
≤Sn
13
24
点评:本题考查数列的求和,考查数列与不等式的综合,正确求和是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网