题目内容

9.已知n∈N*,求证:$\frac{1}{2+1}$+$\frac{2}{{2}^{2}+2}$+$\frac{3}{{2}^{3}+3}$+…+$\frac{n}{{2}^{n}+n}$<$\frac{3}{2}$.

分析 令an=$\frac{n}{{2}^{n}+n}$=$\frac{1}{\frac{{2}^{n}}{n}+1}$,求得$\frac{{a}_{n+1}}{{a}_{n}}$<$\frac{2}{3}$(n≥3),再由不等式的性质和等比数列的求和公式,即可得证.

解答 证明:令an=$\frac{n}{{2}^{n}+n}$=$\frac{1}{\frac{{2}^{n}}{n}+1}$,
$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{\frac{{2}^{n}}{n}+1}{\frac{{2}^{n+1}}{n+1}+1}$<$\frac{\frac{{2}^{n}}{n}}{\frac{{2}^{n+1}}{n+1}}$=$\frac{n+1}{2n}$
=$\frac{1+\frac{1}{n}}{2}$<$\frac{1+\frac{1}{3}}{2}$=$\frac{2}{3}$(n≥3),即$\frac{{a}_{n+1}}{{a}_{n}}$<$\frac{2}{3}$(n≥3),
则a1+a2+a3+…+an<a1+a2+a3+a3•$\frac{2}{3}$+…+a3•($\frac{2}{3}$)n-3
=$\frac{1}{3}$+$\frac{1}{3}$+$\frac{\frac{3}{11}(1-(\frac{2}{3})^{n-2})}{1-\frac{2}{3}}$=$\frac{2}{3}$+$\frac{9}{11}$(1-($\frac{2}{3}$)n-2)<$\frac{2}{3}$+$\frac{9}{11}$=$\frac{98}{66}$<$\frac{3}{2}$.
故不等式$\frac{1}{2+1}$+$\frac{2}{{2}^{2}+2}$+$\frac{3}{{2}^{3}+3}$+…+$\frac{n}{{2}^{n}+n}$<$\frac{3}{2}$成立.

点评 本题考查不等式的证明,注意运用放缩法和等比数列的求和公式,以及不等式的性质,考查推理能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网