题目内容

函数g(x)=log2x,关于方程|g(x)|2+m|g(x)|+2m+3=0在(0,2)内有三个不同的实数解,则实数m的取值范围是(  )
A、(-∞,4-2
7
)∪(4+2
7
,+∞)
B、(4-2
7
,4+2
7
C、(-
3
4
,-
2
3
D、(-
3
2
,-
4
3
考点:函数的零点与方程根的关系
专题:计算题,函数的性质及应用
分析:由题意|g(x)|2+m|g(x)|+2m+3=0在(0,2)内有三个不同实数解可化为t2+mt+2m+3=0有两个根,分别在(0,1),[1,+∞)上或在(0,1),{0}上;从而分别讨论即可.
解答: ∵g(x)=log2x在(0,2)上单调递增,
且g(x)<1;
故|g(x)|2+m|g(x)|+2m+3=0在(0,2)内有三个不同实数解可化为
t2+mt+2m+3=0有两个根,分别在(0,1),[1,+∞)上或在(0,1),{0}上;
当若在(0,1),{0}上,则2m+3=0,则m=-
3
2

故t=0或t=
3
2

不成立;
若在(0,1),{1}上;
则1+m+2m+3=0,
故m=-
4
3

故t2+mt+2m+3=0的解为t=
1
3
或t=1;成立;
若在(0,1),(1,+∞)上,
△=m2-4(2m+3)>0
2m+3+m+1<0
2m+3>0

解得-
3
2
<m<-
4
3

故选D.
点评:本题考查了函数的零点与方程的根的关系应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网