题目内容
18.已知抛物线的方程为y2=8x,过其焦点F的直线l与抛物线交于A、B两点,若S△AOF=S△BOF(O为坐标原点),则|AB|=( )| A. | $\frac{16}{3}$ | B. | 8 | C. | $\frac{4}{3}$ | D. | 4 |
分析 设A,B的纵坐标为y1,y2,则由S△AOF=S△BOF,得到AB⊥x轴,即A(2,y1),则|y1|=4,问题得以解决.
解答 解:设A,B的纵坐标为y1,y2,则由S△AOF=S△BOF,得$\frac{1}{2}$|OF||y1|=$\frac{1}{2}$|OF||y2|,即y1+y2=0,
即AB⊥x轴,即A(2,y1),则|y1|=4,所以|AB|=8.
故选:B.
点评 本题考查了抛物线的定义、直线与抛物线相交问题、三角形面积之比,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
6.已知集合A={(x,y)|$\sqrt{\frac{{x}^{2}}{9}}+\sqrt{\frac{{y}^{2}}{4}}≤1$},B={(x,y)|x-2y≤0},区域M=A∩B,则区域M的面积为( )
| A. | 6 | B. | 8 | C. | 12 | D. | 24 |
8.某学生四次模拟考试时,其英语作文的减分情况如下表:
显然所减分数y与模拟考试次数x之间有较好的线性相关关系,参考公式:
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{x}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\frac{1}{n}$$\sum_{i=1}^{n}$yi
则其回归线性方程为$\widehat{y}$=-0.7x+5.25.
| 考试次数x | 1 | 2 | 3 | 4 |
| 所减分数y | 4.5 | 4 | 3 | 2.5 |
$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{x}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$,$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\frac{1}{n}$$\sum_{i=1}^{n}$yi
则其回归线性方程为$\widehat{y}$=-0.7x+5.25.