题目内容

13.在△ABC中,$\overrightarrow{AM}$=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$
(Ⅰ)求△ABM与△ABC的面积之比
(Ⅱ)若N为AB中点,$\overrightarrow{AM}$与$\overrightarrow{CN}$交于点P且$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),求x+y的值.

分析 (Ⅰ)由$\overrightarrow{AM}$=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$⇒3$\overrightarrow{BM}=\overrightarrow{MC}$,即点M在线段BC上的靠近B的四等分点即可,
(Ⅱ)$\overrightarrow{AP}∥\overrightarrow{AM}$设$\overrightarrow{AP}$=$λ\overrightarrow{AM}$=$\frac{3λ}{4}\overrightarrow{AB}+\frac{λ}{4}\overrightarrow{AC}=\frac{3λ}{2}\overrightarrow{AN}+\frac{λ}{4}\overrightarrow{AC}$;$\frac{3λ}{2}+\frac{λ}{4}=1,解得λ=\frac{4}{7}$.

解答 解:(Ⅰ)在△ABC中,$\overrightarrow{AM}$=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$⇒$4\overrightarrow{AM}-3\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{0}$⇒3$(\overrightarrow{AM}-\overrightarrow{AB})=\overrightarrow{AC}-\overrightarrow{AM}$
⇒3$\overrightarrow{BM}=\overrightarrow{MC}$,即点M在线段BC上的靠近B的四等分点,
∴△ABM与△ABC的面积之比为$\frac{1}{4}$.
(Ⅱ)∵$\overrightarrow{AM}$=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$,$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),$\overrightarrow{AP}∥\overrightarrow{AM}$,
∴设$\overrightarrow{AP}$=$λ\overrightarrow{AM}$=$\frac{3λ}{4}\overrightarrow{AB}+\frac{λ}{4}\overrightarrow{AC}=\frac{3λ}{2}\overrightarrow{AN}+\frac{λ}{4}\overrightarrow{AC}$;
∵三点N、P、C共线,∴$\frac{3λ}{2}+\frac{λ}{4}=1,解得λ=\frac{4}{7}$,$x=\frac{3λ}{4}=\frac{3}{7},y=\frac{1}{4}λ=\frac{1}{7}$,
x+y=$\frac{4}{7}$.

点评 本题考查了向量的线性运算,利用三点共线,系数和为1,是解题的关键,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网