题目内容

13.若直线ax+2by-2=0(a,b>0)始终平分圆x2+y2-4x-2y=0的周长,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为3+2$\sqrt{2}$.

分析 由题意得,直线过圆心(2,1),即 a+b=1,$\frac{1}{a}$+$\frac{2}{b}$=(a+b)($\frac{1}{a}$+$\frac{2}{b}$)=3+$\frac{b}{a}$+$\frac{2a}{b}$,利用基本不等式求出其最小值.

解答 解:由题意得,直线过圆心(2,1),所以,a+b=1.
∴$\frac{1}{a}$+$\frac{2}{b}$=(a+b)($\frac{1}{a}$+$\frac{2}{b}$)=3+$\frac{b}{a}$+$\frac{2a}{b}$≥3+2$\sqrt{2}$,当且仅当$\frac{b}{a}$=$\frac{2a}{b}$时,等号成立,
故答案为3+2$\sqrt{2}$.

点评 本题考查直线和圆相交的性质,基本不等式的应用,解题的突破口是判断直线过圆心,解题的关键是利用a+b=1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网