题目内容

在△ABC中,若b=2
3
,B=30°,则
a+c
sinA+sinC
的值为
 
考点:正弦定理的应用
专题:解三角形
分析:由正弦定理化简
a+c
sinA+sinC
=
b
sinB
解答: 解:由正弦定理得:
a
sinA
=
b
sinB
=
C
sinC
=2R

∴a=2RsinA,c=2RsinC,
a+c
sinA+sinC
=
2RsinA+2RsinC
sinA+sinC
=2R=
b
sinB
=
2
3
sin30°
=4
3

故答案为:4
3
点评:本题主要考查正弦定理的应用,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网