题目内容
| 3 |
| 6 |
(Ⅰ)证明:A1D⊥平面AB1C1;
(Ⅱ)求二面角B-AB1-C1的余弦值.
考点:与二面角有关的立体几何综合题,平面与平面垂直的判定
专题:
分析:(Ⅰ) 由已知,AA1⊥平面ABC,∠ACB=90°,证出B1C1⊥AA1C1C,从而得B1C1⊥A1D;在矩形AA1C1C中,利用△ACC1~△DC1A1,证出A1D⊥AC1,由线面垂直的判定定理即可证明:A1D⊥平面AB1C1;
(Ⅱ)在(Ⅰ)的基础上,设垂足(即为A1D与AC1的交点)为H,过A1作AB1的垂线,垂足为G,连GH,由三垂线定理逆定理,可证∠A1GH为二面角A1-AB1-C1的平面角,再解三角形A1GH即可获解.
(Ⅱ)在(Ⅰ)的基础上,设垂足(即为A1D与AC1的交点)为H,过A1作AB1的垂线,垂足为G,连GH,由三垂线定理逆定理,可证∠A1GH为二面角A1-AB1-C1的平面角,再解三角形A1GH即可获解.
解答:
(Ⅰ)证明:∵∠ACB=90°,∴BC⊥AC.
∵三棱柱ABC-A1B1C1中,CC1⊥平面ABC,
∴BC⊥CC1,
∵AC∩CC1=C,
∴BC⊥平面ACC1A1.
∵A1D?平面ACC1A1,∴BC⊥A1D,
而BC∥B1C1,则B1C1⊥A1D.
在Rt△ACC1与Rt△DC1A1中,
=
=
,∴△ACC1~△DC1A1,
∴∠AC1C=∠DA1C1,
∴∠AC1C+∠C1DA1=90°.即A1D⊥AC1.
∵B1C1∩AC1=C1,
∴A1D⊥平面AB1C1;
(Ⅱ)解:如图,设A1D∩AC1=H,过A1作AB1的垂线,垂足为G,连GH,
∵A1D⊥平面AB1C1,∴AB1⊥A1D,∴AB1⊥平面A1GH,
∴∠A1GH为二面角A1-AB1-C1的平面角.
在Rt△AA1B1中,AA1=
,A1B1=2,
∴AB1=
,
∴由等面积,可得A1G=
;
在Rt△AA1C1中,AA1=
,A1C1=
,
∴AC1=3,∴由等面积,可得A1H=
.
∴在Rt△A1GH中,sin∠A1GH=
,
∴cos∠A1GH=
,
∴二面角B-AB1-C1的余弦值为-
.
∵三棱柱ABC-A1B1C1中,CC1⊥平面ABC,
∴BC⊥CC1,
∵AC∩CC1=C,
∴BC⊥平面ACC1A1.
∵A1D?平面ACC1A1,∴BC⊥A1D,
而BC∥B1C1,则B1C1⊥A1D.
在Rt△ACC1与Rt△DC1A1中,
| AC |
| CC1 |
| DC1 |
| AC1 |
| ||
| 2 |
∴∠AC1C=∠DA1C1,
∴∠AC1C+∠C1DA1=90°.即A1D⊥AC1.
∵B1C1∩AC1=C1,
∴A1D⊥平面AB1C1;
(Ⅱ)解:如图,设A1D∩AC1=H,过A1作AB1的垂线,垂足为G,连GH,
∵A1D⊥平面AB1C1,∴AB1⊥A1D,∴AB1⊥平面A1GH,
∴∠A1GH为二面角A1-AB1-C1的平面角.
在Rt△AA1B1中,AA1=
| 6 |
∴AB1=
| 10 |
∴由等面积,可得A1G=
2
| ||
| 5 |
在Rt△AA1C1中,AA1=
| 6 |
| 3 |
∴AC1=3,∴由等面积,可得A1H=
| 2 |
∴在Rt△A1GH中,sin∠A1GH=
| ||
| 6 |
∴cos∠A1GH=
| ||
| 6 |
∴二面角B-AB1-C1的余弦值为-
| ||
| 6 |
点评:本题考查二面角的计算,直线和平面垂直的性质、判定,考查学生空间想象能力,计算能力、转化能力.空间问题平面化,是解决空间问题最核心的思想方法.
练习册系列答案
相关题目
已知在一个120°的二面角的棱上有两个点A、B,AC、BD分别是在这个二面角的两个半平面内且垂直于AB的线段,又AB=4cm,AC=6cm,BD=8cm,则CD的长为( )
A、2
| ||
B、
| ||
C、2
| ||
D、4
|