题目内容
已知α∈(0,
),且cos(α+
)=-
,求cosα的值.
| 2π |
| 3 |
| π |
| 3 |
| 11 |
| 14 |
考点:两角和与差的余弦函数
专题:三角函数的求值
分析:由条件求得sin(α+
)=
,再根据cosα=cos[(α+
)-
],利用两角差的余弦公式,计算求得结果.
| π |
| 3 |
5
| ||
| 14 |
| π |
| 3 |
| π |
| 3 |
解答:
解:∵α∈(0,
),∴α+
∈(
,π),
∵cos(α+
)=-
,∴sin(α+
)=
,
∴cosα=cos[(α+
)-
]
=cos(α+
)cos
+sin(α+
)sin
=-
×
+
×
=
.
| 2π |
| 3 |
| π |
| 3 |
| π |
| 3 |
∵cos(α+
| π |
| 3 |
| 11 |
| 14 |
| π |
| 3 |
5
| ||
| 14 |
∴cosα=cos[(α+
| π |
| 3 |
| π |
| 3 |
=cos(α+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=-
| 11 |
| 14 |
| 1 |
| 2 |
5
| ||
| 14 |
| ||
| 2 |
=
| 1 |
| 7 |
点评:本题主要考查同角三角函数的基本关系,两角和差的余弦公式的应用,属于中档题.
练习册系列答案
相关题目
不等式
≥0的解集是( )
| x-3 |
| x-1 |
| A、{x|x≤1或x≥3} |
| B、{x|x<1或x≥3} |
| C、{x|1<x≤3} |
| D、{x|1≤x≤3} |