题目内容

已知递增的等比数列{an}满足:a2+a3+a4=28,a3+2是a2与a4的等差中项.
(1)求数列{an}的通项公式;
(2)假设bn=
an
(an+1)(an+1+1)
,其数列{bn}的前n项和Tn
考点:数列的求和,等差数列的性质,等比数列的性质
专题:等差数列与等比数列
分析:(1)由已知条件推导出
a1q2=8
a1q+a1q3=20
,由此求出首项和公比,从而得到an=2n
(2)先由裂项法求出bn=
1
2n +1
-
1
2n+1+1
,由此能求出Tn=
1
3
-
1
2n+1+1
解答: 解:(1)∵递增的等比数列{an}满足:a2+a3+a4=28,a3+2是a2与a4的等差中项,
∴2(a3+2)=a2+a4,a3=8,a2+a4=80,
a1q2=8
a1q+a1q3=20

解得a1=2,q=2,或a1=32,q=
1
2
(舍),
an=2n
(2)bn=
an
(an+1)(an+1+1)

=
2n
(2n+1)(2n+1+1)

=
1
2n +1
-
1
2n+1+1

∴Tn=
1
2+1
-
1
22 +1
+
1
22+1
-
1
23-1
+…+
1
2n-1+1
-
1
2n  +1
+
1
2n+1
-
1
2n+1+1

=
1
2+1
-
1
2n+1  +1

=
1
3
-
1
2n+1+1
点评:本题考查数列的通项公式和前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网