题目内容
已知递增的等比数列{an}满足:a2+a3+a4=28,a3+2是a2与a4的等差中项.
(1)求数列{an}的通项公式;
(2)假设bn=
,其数列{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)假设bn=
| an |
| (an+1)(an+1+1) |
考点:数列的求和,等差数列的性质,等比数列的性质
专题:等差数列与等比数列
分析:(1)由已知条件推导出
,由此求出首项和公比,从而得到an=2n.
(2)先由裂项法求出bn=
-
,由此能求出Tn=
-
.
|
(2)先由裂项法求出bn=
| 1 |
| 2n +1 |
| 1 |
| 2n+1+1 |
| 1 |
| 3 |
| 1 |
| 2n+1+1 |
解答:
解:(1)∵递增的等比数列{an}满足:a2+a3+a4=28,a3+2是a2与a4的等差中项,
∴2(a3+2)=a2+a4,a3=8,a2+a4=80,
∴
,
解得a1=2,q=2,或a1=32,q=
(舍),
∴an=2n.
(2)bn=
=
=
-
,
∴Tn=
-
+
-
+…+
-
+
-
=
-
=
-
.
∴2(a3+2)=a2+a4,a3=8,a2+a4=80,
∴
|
解得a1=2,q=2,或a1=32,q=
| 1 |
| 2 |
∴an=2n.
(2)bn=
| an |
| (an+1)(an+1+1) |
=
| 2n |
| (2n+1)(2n+1+1) |
=
| 1 |
| 2n +1 |
| 1 |
| 2n+1+1 |
∴Tn=
| 1 |
| 2+1 |
| 1 |
| 22 +1 |
| 1 |
| 22+1 |
| 1 |
| 23-1 |
| 1 |
| 2n-1+1 |
| 1 |
| 2n +1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1+1 |
=
| 1 |
| 2+1 |
| 1 |
| 2n+1 +1 |
=
| 1 |
| 3 |
| 1 |
| 2n+1+1 |
点评:本题考查数列的通项公式和前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
等比数列{an}中,a2=18,a4=8,则数列{an}的公比为( )
A、
| ||
B、
| ||
C、±
| ||
D、±
|