题目内容

已知向量
m
=(2sin(ωx+
π
3
),1),
n
=(2cosωx,-
3
),(ω>0),函数f(x)=
m
n
的两条相邻对称轴间的距离为
π
2

(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)当x∈[-
π
3
π
6
]时,求f(x)的值域.
考点:平面向量数量积的运算,正弦函数的定义域和值域,正弦函数的单调性
专题:三角函数的图像与性质,平面向量及应用
分析:(I)利用数量积运算、倍角公式、两角和差的正弦公式可得f(x)=2sin(2ωx+
π
3
)
.再利用正弦函数的单调性和周期性即可得出.
(II)利用正弦函数的单调性即可得出.
解答: 解:(Ⅰ)函数f(x)=
m
n
=4sin(ωx+
π
3
)•cosωx-
3

=4(
1
2
sinωx+
3
2
cosωx)
•cosωx-
3

=sin2ωx+2
3
cos2ωx
-
3

=sin2ωx+
3
cos2ωx
=2sin(2ωx+
π
3
)

T=
=π,解得ω=1.
∴f(x)=2sin(2x+
π
3
)

2kπ-
π
2
2x+
π
3
≤2kπ+
π
2
,解得kπ-
12
≤x≤kπ+
π
12

∴单调递增区间是[kπ-
12
,kπ+
π
12
]
(k∈Z).
(Ⅱ)∵x∈[-
π
3
π
6
]
,∴2x+
π
3
∈[-
π
3
3
]

sin(2x+
π
3
)∈[-
3
2
,1]

f(x)∈[-
3
,2]
,即f(x)的值域是[-
3
,2]
点评:本题考查了数量积运算、倍角公式、两角和差的正弦公式、正弦函数的单调性,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网