题目内容
13.已知tanα=2,求下列各式的值.(1)$\frac{sinα-4cosα}{5sinα+2cosα}$;
(2)sin2α+sin2α.
分析 (1)由条件利用同角三角函数的基本关系,求得要求式子的值.
(2)利用同角三角函数的基本关系,二倍角公式,求得要求式子的值.
解答 解:(1)∵tanα=2,∴$\frac{sinα-4cosα}{5sinα+2cosα}$=$\frac{tanα-4}{5tanα+2}$=-$\frac{1}{6}$;
(2)sin2α+sin2α=$\frac{{sin}^{2}α+2sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α+2tanα}{{tan}^{2}α+1}$=$\frac{8}{5}$.
点评 本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.
练习册系列答案
相关题目
18.已知定义在R上的函数f(x)满足:①f(x)=f(4-x),②f(x+2)=f(x),③在[0,1]上表达式为f(x)=2x-1,则函数g(x)=f(x)-log3|x|的零点个数为( )
| A. | 4 | B. | 5 | C. | 6 | D. | 7 |
4.
为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:kg),并将所得数据分组,画出频率分布直方图(如图所示).
(1)在下面表格中填写相应的频率;
(2)估计数据落在[1.15,1.30)中的概率为多少;
(3)将上面捕捞的100条鱼分别作一记号后再放回水库.几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条.请根据这一情况来估计该水库中鱼的总条数.
(1)在下面表格中填写相应的频率;
| 分组 | 频率 |
| [1.00,1.05) | |
| [1.05,1.10) | |
| [1.10,1.15) | |
| [1.15,1.20) | |
| [1.20,1.25) | |
| [1.25,1.30) |
(3)将上面捕捞的100条鱼分别作一记号后再放回水库.几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条.请根据这一情况来估计该水库中鱼的总条数.