题目内容
16.已知函数f(x)=cos(2x+φ),|φ|≤$\frac{π}{2}$,若f($\frac{8π}{3}$-x)=-f(x),则要得到y=sin2x的图象只需将y=f(x)的图象( )| A. | 向左平移$\frac{π}{6}$个单位 | B. | 向右平移$\frac{π}{6}$个单位 | ||
| C. | 向左平移$\frac{π}{3}$个单位 | D. | 向右平移$\frac{π}{3}$个单位 |
分析 根据f($\frac{8π}{3}$-x)=-f(x),求出函数f(x)的解析式,根据三角函数平移变换的规律求解即可.
解答 解:函数f(x)=cos(2x+φ),|φ|≤$\frac{π}{2}$,
由$f(\frac{8π}{3}-x)=-f(x)$,
可得cos[2($\frac{8π}{3}$-x)+φ]=-cos(2x+φ),
整理得:cos($\frac{4π}{3}-2x+$φ)=-cos(2x+φ)=cos(π-(2x+φ]
∵φ|≤$\frac{π}{2}$,
∴令$\frac{4π}{3}-2x+$φ=π-(2x+φ)
解得:φ=$-\frac{π}{6}$
故函数f(x)=cos(2x$-\frac{π}{6}$)=sin(2x$-\frac{π}{6}$+$\frac{π}{2}$)=sin(2x$+\frac{π}{3}$)=sin2(x$+\frac{π}{6}$)
向右平移$\frac{π}{6}$个单位可得到sin2x.
故选B.
点评 本题考查了函数f(x)的解析式的确定以及平移变换的规律.属于中档题.
练习册系列答案
相关题目
6.某商店销售额和利润额如表:
(1)画出散点图.观察散点图,说明两个变量有怎样的相关性.
(2)计算利润额y对销售额x的回归直线方程.
(3)当销售额为4(千万元)时,估计利润额的大小.
| 商店名称 | A | B | C | D | E |
| 销售额x(千万元) | 3 | 5 | 6 | 7 | 9 |
| 利润额y(百万元) | 2 | 3 | 3 | 4 | 5 |
(2)计算利润额y对销售额x的回归直线方程.
(3)当销售额为4(千万元)时,估计利润额的大小.
7.
如图,在平行六面体ABCD-A1B1C1D1中,已知$\overrightarrow{AB}=\overrightarrow a$,$\overrightarrow{AD}=\overrightarrow b$,$\overrightarrow{A{A_1}}=\overrightarrow c$,则用向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$可表示向量$\overrightarrow{B{D_1}}$等于( )
| A. | $\overrightarrow a+\overrightarrow b+\overrightarrow c$ | B. | $\overrightarrow a-\overrightarrow b+\overrightarrow c$ | C. | $\overrightarrow a+\overrightarrow b-\overrightarrow c$ | D. | $-\overrightarrow a+\overrightarrow b+\overrightarrow c$ |
11.sin1cos2tan3的值为( )
| A. | 负数 | B. | 正数 | C. | 0 | D. | 不存在 |
1.在直角坐标平面内,曲线|x-1|+|x+1|+|y|=4围成的图形面积为( )
| A. | 12 | B. | 16 | C. | 20 | D. | 24 |
8.已知n=${∫}_{0}^{6}$$\frac{1}{3}$xdx,则($\frac{\sqrt{x}}{3}$-$\frac{3}{\sqrt{x}}$)n的展开式中x2的系数为( )
| A. | -$\frac{4}{27}$ | B. | -$\frac{2}{27}$ | C. | $\frac{2}{27}$ | D. | $\frac{4}{27}$ |
17.已知函数$f(x)=\left\{\begin{array}{l}x+1(x<1)\\-x+3(x≥1)\end{array}\right.$,则$f[f(\frac{5}{2})]$=( )
| A. | $\frac{1}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{9}{2}$ | D. | $\frac{3}{2}$ |