题目内容
8.计算:$\sqrt{(π-4)^{2}}$=4-π.lg$\frac{1}{100}$+ln$\sqrt{e}$=-$\frac{3}{2}$.分析 利用根式的运算性质、对数的运算性质即可得出.
解答 解:$\sqrt{(π-4)^{2}}$=4-π.
lg$\frac{1}{100}$+ln$\sqrt{e}$=-2+$\frac{1}{2}$=-$\frac{3}{2}$.
故答案分别为:4-π;-$\frac{3}{2}$.
点评 本题考查了根式的运算性质、对数的运算性质,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
18.已知点M是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左支上一点,F是其右焦点,P为线段MF的中点,若|OM|=|OF|(0为坐标原点)且|OP|=$\frac{1}{2}$a,则双曲线的离心率为( )
| A. | $\frac{\sqrt{10}}{2}$ | B. | $\sqrt{10}$ | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
19.已知数列{an}的前n项和为Sn,满足nSn+1-(n+1)Sn=2n2+2n(n∈N*),a1=3,则数列{an}的通项an=( )
| A. | 4n-1 | B. | 2n+1 | C. | 3n | D. | n+2 |
13.设F1,F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,点M(3,$\sqrt{2}$)在此双曲线上,点F2到直线MF1的距离为$\frac{4\sqrt{6}}{9}$,则双曲线的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{6}}{3}$ |
20.已知tanα=2,α为第一象限角,则sin2α+cosα的值为( )
| A. | $\sqrt{5}$ | B. | $\frac{{4+2\sqrt{5}}}{5}$ | C. | $\frac{{4+\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{5}-2}}{5}$ |
17.(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)+1=( )
| A. | x5 | B. | (x-1)5-1 | C. | x5+1 | D. | 1 |