题目内容

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左右顶点分别为A1,A2,点M为椭圆上不同于A1,A2的一点,若直线MA1,MA2与直线的斜率之积为$-\frac{1}{2}$,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

分析 设出M坐标,由直线AM,BM的斜率之积为-$\frac{1}{2}$得一关系式,再由点M在椭圆上变形可得另一关系式,联立后结合隐含条件求得椭圆的离心率.

解答 解:由椭圆方程可知,A(-a,0),B(a,0),
设M(x0,y0),∴${k}_{AM}=\frac{{y}_{0}}{{x}_{0}+a}$,${k}_{BM}=\frac{{y}_{0}}{{x}_{0}-a}$,
则$\frac{{y}_{0}}{{x}_{0}+a}•\frac{{y}_{0}}{{x}_{0}-a}=-\frac{1}{2}$,整理得:$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{a}^{2}}=-\frac{1}{2}$,①
又$\frac{{{x}_{0}}^{2}}{{a}^{2}}+\frac{{{y}_{0}}^{2}}{{b}^{2}}=1$,得${{y}_{0}}^{2}=\frac{{b}^{2}}{{a}^{2}}({a}^{2}-{{x}_{0}}^{2})$,
即$\frac{{{y}_{0}}^{2}}{{{x}_{0}}^{2}-{a}^{2}}=-\frac{{b}^{2}}{{a}^{2}}$,②
联立①②,得-$\frac{{b}^{2}}{{a}^{2}}=-\frac{1}{2}$,即$\frac{{a}^{2}-{c}^{2}}{{a}^{2}}=\frac{1}{2}$,解得e=$\frac{\sqrt{2}}{2}$.
故选:C.

点评 本题考查椭圆的简单性质,考查了数学转化思想方法,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网