ÌâÄ¿ÄÚÈÝ

14£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¾­¹ýµã£¨$\frac{\sqrt{5}}{2}$£¬$\frac{\sqrt{3}}{2}$£©£¬ÀëÐÄÂÊΪ$\frac{2\sqrt{5}}{5}$£¬µãOÎ»×ø±êÔ­µã£®
£¨1£©ÇóÍÖÔ²EµÄ±ê×¼·½³Ì£»
£¨2£©¹ýÍÖÔ²EµÄ×ó½¹µãF×÷ÈÎÒ»Ìõ²»´¹Ö±ÓÚ×ø±êÖáµÄÖ±Ïßl£¬½»ÍÖÔ²EÓÚP£¬QÁ½µã£¬¼ÇÏÒPQµÄÖеãΪM£¬¹ýF×÷PQµÄÖеãΪM£¬¹ýF×öPQµÄ´¹ÏßFN½»Ö±ÏßOMÓÚµãN£¬Ö¤Ã÷£¬µãNÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊÇóµÃa2=5b2£¬½«µã£¨$\frac{\sqrt{5}}{2}$£¬$\frac{\sqrt{3}}{2}$£©´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬¼´¿ÉÍÖÔ²·½³Ì£»
£¨2£©ÉèÖ±Ïß·½³Ìl£¬ÔòÖ±ÏßFN£ºy=-$\frac{1}{k}$£¨x+2£©£¬½«Ö±Ïßl´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°Öеã×ø±ê¹«Ê½£¬¸ù¾ÝÖ±ÏßOM·½³Ì£¬ÇóµÃÖ±ÏßFNºÍOMµÄ½»µãN£¬¼´¿ÉµÃÖ¤£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£ºÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{2\sqrt{5}}{5}$£¬
Ôòa2=5b2£¬
½«µã£¨$\frac{\sqrt{5}}{2}$£¬$\frac{\sqrt{3}}{2}$£©´úÈëÍÖÔ²$\frac{{x}^{2}}{5{b}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$£¬½âµÃ£ºb2=1£¬a2=5£¬
¡àÍÖÔ²EµÄ±ê×¼·½³Ì$\frac{{x}^{2}}{5}+{y}^{2}=1$£»
£¨2£©Ö¤Ã÷£ºÓÉÌâÒâ¿ÉÖª£ºÖ±ÏßlµÄбÂÊ´æÔÚ£¬ÇÒ²»Îª0£¬y=k£¨x+2£©£¬Ö±ÏßFN£ºy=-$\frac{1}{k}$£¨x+2£©£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬M£¨x0£¬y0£©£¬
Ôò$\left\{\begin{array}{l}{y=k£¨x+2£©}\\{\frac{{x}^{2}}{5}+{y}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨1+5k2£©x2+20k2x+20k2-5=0£¬
ÓÉΤ´ï¶¨Àí¿ÉÖª£ºx1+x2=-$\frac{20{k}^{2}}{1+5{k}^{2}}$£¬x1+x2=$\frac{20{k}^{2}-5}{1+5{k}^{2}}$£¬
Ôòx0=$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{10{k}^{2}}{1+5{k}^{2}}$£¬y0=k£¨x0+2£©=$\frac{2k}{1+5{k}^{2}}$£¬
ÔòÖ±ÏßOMµÄбÂÊΪkOM=$\frac{{y}_{0}}{{x}_{0}}$=-$\frac{1}{5k}$£¬
Ö±ÏßOM£ºy=-$\frac{1}{5k}$x£¬
$\left\{\begin{array}{l}{y=-\frac{1}{5k}x}\\{y=-\frac{1}{k}£¨x+2£©}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{x=-\frac{5}{2}}\\{y=\frac{1}{2k}}\end{array}\right.$£¬
¼´ÓÐkÈ¡ºÎÖµ£¬NµÄºá×ø±ê¾ùΪ-$\frac{5}{2}$£¬ÔòµãNÔÚÒ»Ìõ¶¨Ö±Ïßx=-$\frac{5}{2}$ÉÏ£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½£¬×¢ÒâÔËÓÃÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨Àí£¬Í¬Ê±¿¼²éµãÔÚ¶¨Ö±ÏßÉϵÄÇ󷨣¬×¢ÒâÔËÓÃÖ±Ïß·½³ÌÇ󽻵㣬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø