题目内容
已知等差数列{an}的各项均为正数,a1=3,前n项和为Sn,数列{bn}为等比数列,b1=1,且b2S2=4,b3S3=
.
(1)求an与bn;
(2)记数列(
)的前n项和为Tn,且
Tn=T,求使bn≥
成立的所有正整数n.
| 15 |
| 4 |
(1)求an与bn;
(2)记数列(
| 1 |
| Sn |
| lim |
| n→∞ |
| T |
| 3 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件推导出
,把a1=3,b1=1解得
,由此能求出求an与bn.
(2)由(1)得Sn=
=n(n+2),由此利用裂项求和法能求出Tn=
-
-
,利用极限知识求出T=
.由此能求出使bn≥
成立的所有正整数n.
|
|
(2)由(1)得Sn=
| n(3+2n+1) |
| 2 |
| 3 |
| 4 |
| 1 |
| 2(n+1) |
| 1 |
| 2(n+2) |
| 3 |
| 4 |
| T |
| 3 |
解答:
解:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,
则由题意知
,
把a1=3,b1=1代入上式,解得
或
,
∵等差数列{an}的各项均为正数,∴舍去d=-
,
∴an=3+(n-1)×2=2n+1,bn=1×(
)n-1=(
)n-1.
(2)由(1)得Sn=
=n(n+2),
则Tn=
+
+
+…+
=
(1-
+
-
+…+
-
)
=
(1+
-
-
)
=
-
-
,
∴
Tn=
(
-
-
)=
,
∴T=
.
∴(
)n-1≥
,解得n≤3.
∴n=1,2,3.
则由题意知
|
把a1=3,b1=1代入上式,解得
|
|
∵等差数列{an}的各项均为正数,∴舍去d=-
| 6 |
| 5 |
∴an=3+(n-1)×2=2n+1,bn=1×(
| 1 |
| 2 |
| 1 |
| 2 |
(2)由(1)得Sn=
| n(3+2n+1) |
| 2 |
则Tn=
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 3×5 |
| 1 |
| n(n+2) |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 1 |
| 2(n+1) |
| 1 |
| 2(n+2) |
∴
| lim |
| n→∞ |
| lim |
| n→∞ |
| 3 |
| 4 |
| 1 |
| 2(n+1) |
| 1 |
| 2(n+2) |
| 3 |
| 4 |
∴T=
| 3 |
| 4 |
∴(
| 1 |
| 2 |
| 1 |
| 4 |
∴n=1,2,3.
点评:本题考查数列的通项公式的求法,考查满足条件的所有正整数的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目