题目内容

棱长为1的正方体ABCD-A1B1C1D1中,P,M分别为线段BD1,B1C1上的点,若BP=2PD1,则三棱锥M-PBC的体积.
考点:棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:利用直线与平面平行,转化所求几何体的体积为同底面高相等的棱锥的体积,即可求出三棱锥M-PBC的体积.
解答: 解:∵棱长为3的正方体ABCD-A1B1C1D1中,
P、M分别为线段BD1,B1C1上的点,BP=2PD1,因为几何体是正方体,所以B1M∥BC,
∴M到面PBC的距离与B1到面PBC的距离相等,三棱锥M-PBC的体积
转化为:三棱锥P-B1BC的体积,正方体的棱长为1,
BP=2PD1,P到平面B1BC的距离为:
2
3

∴VM-PBC=VP-BB1C=
1
3
×
1
2
×1×1×
2
3
=
1
9
点评:本题考查三棱锥的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题,考查转化思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网