题目内容
已知数列{an}的前n项和Sn=n2+n,则数列bn=
+2
的前5项的和为 .
| 1 |
| anan+1 |
| an |
| 2 |
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件推导出an=2n,从而bn=
+2
=
(
-
)+2n,由此能求出数列bn=
+2
的前5项的和.
| 1 |
| anan+1 |
| an |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| anan+1 |
| an |
| 2 |
解答:
解:∵数列{an}的前n项和Sn=n2+n,
∴a1=S1=1+1=2,
an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n,
当n=1时,上式成立,∴an=2n,
∴bn=
+2
=
+2n
=
(
-
)+2n,
∴数列bn=
+2
的前5项的和:
S5=
(1-
+
-
+
-
+
-
+
-
)+
=
(1-
)+2(32-1)
=
+62
=
.
故答案为:
.
∴a1=S1=1+1=2,
an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n,
当n=1时,上式成立,∴an=2n,
∴bn=
| 1 |
| anan+1 |
| an |
| 2 |
=
| 1 |
| 2n•2(n+1) |
=
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
∴数列bn=
| 1 |
| anan+1 |
| an |
| 2 |
S5=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 6 |
| 2(1-25) |
| 1-2 |
=
| 1 |
| 4 |
| 1 |
| 6 |
=
| 5 |
| 24 |
=
| 1493 |
| 24 |
故答案为:
| 1493 |
| 24 |
点评:本题考查数列的前n项和的求法,是中档题,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关题目
抽查8件产品,记事件A 为‘至少有3件次品’则A对立事件为( )
| A、至多有3件次品 |
| B、至多2件次品 |
| C、至多有3件正品 |
| D、至少有2件正品 |
不等式ax2+bx+c<0(a≠0)的解集为R,则( )
| A、a<0,△<0 |
| B、a<0,△≤0 |
| C、a>0,△≥0 |
| D、a>0,△≤0 |