题目内容
设有数列{an},a1=
,若以a1,a2,a3,…,an中相邻两项为系数的二次方程an-1x2-anx+1=0都有相同的根α、β,且满足3α-αβ+3β=1.
(1)求证:{an-
}是等比数列;
(2)求数列{an}的通项公式;
(3)求数列{an}的前5项和S5.
| 5 |
| 6 |
(1)求证:{an-
| 1 |
| 2 |
(2)求数列{an}的通项公式;
(3)求数列{an}的前5项和S5.
考点:数列的求和,等比关系的确定
专题:等差数列与等比数列
分析:(1)由韦达定理得
,代入3(αn+βn)-αnβn=1,能证明数列{an-
}是等比数列.
(2)由an-
=(a1-
)•(
)n-1=(
)n,能求出an=(
)n+
.
(3)利用分组求和法能求出数列{an}的前5项和S5.
|
| 1 |
| 2 |
(2)由an-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
(3)利用分组求和法能求出数列{an}的前5项和S5.
解答:
(1)证明:∵二次方程an-1x2-anx+1=0有实数根αn、βn,
∴
,
代入3(αn+βn)-αnβn=1,
得an=
an-1+
,
∴
=
=
(定值),
∴数列{an-
}是等比数列.
(2)解:a1=
,a1-
=
,又数列{an-
}是公比为
的等比数列,
∴an-
=(a1-
)•(
)n-1=(
)n,
∴an=(
)n+
.
(3)解:S5=a1+a2+a3+a4+a5
=(
+
)+[(
)2+
]+[(
)3+
]+[(
)4+
]+[(
)5+
]
=
+(
)2+(
)3+(
)4+(
)5+
=
+
=
+
=
.
∴
|
代入3(αn+βn)-αnβn=1,
得an=
| 1 |
| 3 |
| 1 |
| 3 |
∴
an-
| ||
an-1-
|
| ||||||
an-1-
|
| 1 |
| 3 |
∴数列{an-
| 1 |
| 2 |
(2)解:a1=
| 5 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
∴an-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
∴an=(
| 1 |
| 3 |
| 1 |
| 2 |
(3)解:S5=a1+a2+a3+a4+a5
=(
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 5 |
| 2 |
=
| ||||
1-
|
| 5 |
| 2 |
| 35-1 |
| 2•35 |
| 5 |
| 2 |
| 1457 |
| 486 |
点评:本题考查等比数列的证明,考查数列的通项公式和前n项和的求法,解题时要认真审题,注意等比数列的性质的合理运用.
练习册系列答案
相关题目