题目内容

12.已知复数z=$\frac{1}{1+i}$,则(  )
A.z的实部为-$\frac{1}{2}$B.z的虚部为-$\frac{1}{2}$i
C.|z|=$\frac{1}{2}$D.z的共轭复数为$\frac{1}{2}$+$\frac{1}{2}$i

分析 直接由复数代数形式的乘除运算化简复数z,分别求出z的实部,虚部,模,共轭复数,则答案可求.

解答 解:z=$\frac{1}{1+i}$=$\frac{1-i}{(1+i)(1-i)}=\frac{1-i}{2}=\frac{1}{2}-\frac{1}{2}i$,
∴z的实部为:$\frac{1}{2}$;虚部为:$-\frac{1}{2}$;|z|=$\sqrt{(\frac{1}{2})^{2}+(-\frac{1}{2})^{2}}=\frac{\sqrt{2}}{2}$;共轭复数为:$\frac{1}{2}+\frac{1}{2}i$.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网