题目内容
计算:
(1)
;
(2)lg25+
lg8+lg5•lg20+(lg20)2.
(1)
| sin7°+cos15°sin8° |
| cos7°-sin15°sin8° |
(2)lg25+
| 2 |
| 3 |
考点:两角和与差的正弦函数,对数的运算性质
专题:解三角形
分析:(1)利用两角和差的正弦、余弦公式,化简所给的式子,可得结果.
(2)利用对数的运算性质化简所给的式子,从而得出结论.
(2)利用对数的运算性质化简所给的式子,从而得出结论.
解答:
解:(1)
=
=
=
=tan15°=tan(45°-30°)=
=
=
=2-
.
(2)lg25+
lg8+lg5•lg20+(lg20)2 =2lg5+2lg2+lg20(lg5+lg20)=2+lg20•lg100
=2+2lg20=2+2(1+lg2)=4+2lg2.
| sin7°+cos15°sin8° |
| cos7°-sin15°sin8° |
| sin(15°-8°)+cos15°sin8° |
| cos(15°-8°)-sin15°sin8° |
| sin15°cos8°-cos15°sin8°+cos15°sin8° |
| cos15°cos8°+sin15°sin8°-sin15°sin8° |
=
| sin15°cos8° |
| cos15°cos8° |
| tan45°-tan30° |
| 1+tan45°tan30° |
1-
| ||||
1+1×
|
3-
| ||
3+
|
| 3 |
(2)lg25+
| 2 |
| 3 |
=2+2lg20=2+2(1+lg2)=4+2lg2.
点评:本题主要考查两角和差的三角公式、对数的运算性质的应用,属于中档题.
练习册系列答案
相关题目