题目内容
18.若f(x)的图象关于y轴对称,且有${∫}_{0}^{6}$f(x)dx=3,则${∫}_{-6}^{6}$f(x)dx=6.分析 由题意可知${∫}_{-6}^{6}$f(x)dx=2${∫}_{0}^{6}$f(x)dx,问题得以解决.
解答 解:f(x)的图象关于y轴对称,且有${∫}_{0}^{6}$f(x)dx=3,
∴${∫}_{-6}^{6}$f(x)dx=2${∫}_{0}^{6}$f(x)dx=2×3=6,
故答案为:6.
点评 本题考查了定积分的几何意义,关键是掌握关于y轴对称,左右面积相等,属于基础题.
练习册系列答案
相关题目
3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的中心为坐标原点O,左焦点为F,以OF为直径的圆交双曲线于点P,且4$\overrightarrow{OP}$•$\overrightarrow{OF}$=$\overrightarrow{OF}$2,则该双曲线的离心率是( )
| A. | $\frac{\sqrt{10}-\sqrt{2}}{2}$ | B. | $\frac{\sqrt{10}+\sqrt{2}}{2}$ | C. | $\sqrt{7}$-$\sqrt{3}$ | D. | $\sqrt{7}$+$\sqrt{3}$ |
18.某电视机的广告支出x(单位:万元)与销售收入y(单位:万元)之间有如表所对应的关系:
(1)求出y对x的回归直线方程;
(2)若广告费为9万元,则销售收入为多少万元?
(参考公式:$b=\frac{{{x_1}{y_1}+{x_2}{y_2}+…+{x_n}{y_n}-n\overline x•\overline y}}{{x_1^2+x_2^2+…+x_n^2-n{{\overline x}^2}}}$,$a=\overline y-b\overline x$)
| 广告支出x(单位:万元) | 1 | 2 | 3 | 4 |
| 销售收入y(单位:万元) | 12 | 28 | 42 | 56 |
(2)若广告费为9万元,则销售收入为多少万元?
(参考公式:$b=\frac{{{x_1}{y_1}+{x_2}{y_2}+…+{x_n}{y_n}-n\overline x•\overline y}}{{x_1^2+x_2^2+…+x_n^2-n{{\overline x}^2}}}$,$a=\overline y-b\overline x$)