题目内容

17.在直角梯形ABCD中,AB∥DC,AD⊥AB,AD=AB=2DC=2,点E、F分别在线段DC、AB上,设$\overrightarrow{DE}$=λ$\overrightarrow{DC}$,$\overrightarrow{AF}$=λ$\overrightarrow{AB}$,则$\overrightarrow{AE}$•$\overrightarrow{CF}$的最小值为-$\frac{33}{8}$.

分析 用$\overrightarrow{AB},\overrightarrow{AD}$表示出$\overrightarrow{AE},\overrightarrow{CF}$,计算$\overrightarrow{AE}$•$\overrightarrow{CF}$得出关于λ的二次函数,利用二次函数的性质和λ的范围得出最小值.

解答 解:$\overrightarrow{AE}=\overrightarrow{AD}+\overrightarrow{DE}$=$\overrightarrow{AD}+λ\overrightarrow{DC}$=$\overrightarrow{AD}+\frac{λ}{2}\overrightarrow{AB}$,
$\overrightarrow{CF}=\overrightarrow{CD}+\overrightarrow{DA}+\overrightarrow{AF}$=-$\frac{1}{2}$$\overrightarrow{AB}$-$\overrightarrow{AD}$+$λ\overrightarrow{AB}$=($λ-\frac{1}{2}$)$\overrightarrow{AB}-\overrightarrow{AD}$,
∵AD⊥AB,AD=AB=2DC=2,
∴${\overrightarrow{AD}}^{2}$=${\overrightarrow{AB}}^{2}$=4,$\overrightarrow{AB}•\overrightarrow{AD}=0$,
∴$\overrightarrow{AE}•\overrightarrow{CF}$=($\overrightarrow{AD}+\frac{λ}{2}\overrightarrow{AB}$)•[($λ-\frac{1}{2}$)$\overrightarrow{AB}-\overrightarrow{AD}$]=$\frac{2{λ}^{2}-λ}{4}$${\overrightarrow{AB}}^{2}$-${\overrightarrow{AD}}^{2}$=2λ2-λ-4=2(λ-$\frac{1}{4}$)2-$\frac{33}{8}$,
∴当λ=$\frac{1}{4}$时,$\overrightarrow{AE}•\overrightarrow{CF}$取得最小值-$\frac{33}{8}$.
故答案为:-$\frac{33}{8}$.

点评 本题考查了平面向量的几何运算,数量积运算,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网