题目内容
12.计算:(1)0.064${\;}^{-\frac{1}{3}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}$+0.25${\;}^{\frac{1}{2}}$
(2)3${\;}^{lo{g}_{3}4}$-27${\;}^{\frac{2}{3}}$-lg0.01+lne3.
分析 (1)利用指数的运算法则即可得出.
(2)利用对数的运算法则即可得出.
解答 解:(1)原式=$0.{4}^{3×(-\frac{1}{3})}$-1+${2}^{4×\frac{3}{4}}$+$0.{5}^{2×\frac{1}{2}}$
=$\frac{5}{2}$-1+8+$\frac{1}{2}$=10.
(2)原式=4-${3}^{3×\frac{2}{3}}$-lg10-2+3=4-9+2+3=0.
点评 本题考查了指数与对数的运算法则,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
3.已知函数f(x)=$\sqrt{3}$sinx+3cosx,当x∈[0,π]时,f(x)≥$\sqrt{3}$的概率为( )
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{5}$ | D. | $\frac{1}{4}$ |
1.已知点M在角θ终边的延长线上,且|OM|=2,则M的坐标为( )
| A. | (2cosθ,2sinθ) | B. | (-2cosθ,2sinθ) | C. | (-2cosθ,-2sinθ) | D. | (2cosθ,-2sinθ) |