题目内容

16.已知数列{an}满足an+1=an+1(n∈N*),且a1=1,则$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_{99}}{a_{100}}}}$=$\frac{99}{100}$.

分析 利用裂项消项法,求解数列的和即可.

解答 解:数列{an}满足an+1=an+1(n∈N*),且a1=1,数列是等差数列,an=n.
则$\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_2}{a_3}}}+…+\frac{1}{{{a_{99}}{a_{100}}}}$=$\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{99}-\frac{1}{100}$=1-$\frac{1}{100}$=$\frac{99}{100}$.
故答案为:$\frac{99}{100}$.

点评 本题考查等差数列的应用,数列求和,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网