ÌâÄ¿ÄÚÈÝ
£¨¢ñ£©Í϶¯µãS£¬·¢ÏÖµ±xS=4ʱ£¬yS=4£¬ÊÔÇóÅ×ÎïÏßEµÄ·½³Ì£»
£¨¢ò£©ÉèÅ×ÎïÏßEµÄ¶¥µãΪA£¬½¹µãΪF£¬¹¹ÔìÖ±ÏßSF½»Å×ÎïÏßEÓÚ²»Í¬Á½µãS¡¢T£¬¹¹ÔìÖ±ÏßAS¡¢AT·Ö±ð½»×¼ÏßÓÚM¡¢NÁ½µã£¬¹¹ÔìÖ±ÏßMT¡¢NS£®¾¹Û²ìµÃ£ºÑØ×ÅÅ×ÎïÏßE£¬ÎÞÂÛÔõÑùÍ϶¯µãS£¬ºãÓÐMT¡ÎNS£®ÇëÄãÖ¤Ã÷ÕâÒ»½áÂÛ£®
£¨¢ó£©Îª½øÒ»²½Ñо¿¸ÃÅ×ÎïÏßEµÄÐÔÖÊ£¬Ä³Í¬Ñ§½øÐÐÁËÏÂÃæµÄ³¢ÊÔ£ºÔÚ£¨¢ò£©ÖУ¬°Ñ¡°½¹µãF¡±¸Ä±äΪÆäËü¡°¶¨µãG£¨g£¬0£©£¨g¡Ù0£©¡±£¬ÆäÓàÌõ¼þ²»±ä£¬·¢ÏÖ¡°MTÓëNS²»ÔÙÆ½ÐС±£®ÊÇ·ñ¿ÉÒÔÊʵ±¸ü¸Ä£¨¢ò£©ÖÐµÄÆäËüÌõ¼þ£¬Ê¹µÃÈÔÓС°MT¡ÎNS¡±³ÉÁ¢£¿Èç¹û¿ÉÒÔ£¬Çëд³öÏàÓ¦µÄÕýÈ·ÃüÌ⣻·ñÔò£¬ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺×ÛºÏÌâ,Ô²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊÓë·½³Ì
·ÖÎö£º£¨¢ñ£©°ÑxS=4£¬yS=4´úÈëy2=2px£¬µÃp£¬¼´¿ÉÇó³öÅ×ÎïÏßEµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßl£ºmy=x-1£¬´úÈëÅ×ÎïÏß·½³Ì£¬Çó³öM£¬NµÄ×ø±ê£¬¿ÉµÃ
¡¢
µÄ×ø±ê£¬Ö¤Ã÷
¡Î
£¬¼´¿ÉµÃ³ö½áÂÛ£»
£¨¢ó£©ÉèÅ×ÎïÏßE£ºy2=4xµÄ¶¥µãΪA£¬¶¨µãG£¨g£¬0£©£¨g¡Ù0£©£¬¹ýµãGµÄÖ±ÏßlÓëÅ×ÎïÏßEÏཻÓÚS¡¢TÁ½µã£¬Ö±ÏßAS¡¢AT·Ö±ð½»Ö±Ïßx=-gÓÚM¡¢NÁ½µã£¬ÔòMT¡ÎNS£®
£¨¢ò£©ÉèÖ±Ïßl£ºmy=x-1£¬´úÈëÅ×ÎïÏß·½³Ì£¬Çó³öM£¬NµÄ×ø±ê£¬¿ÉµÃ
| MT |
| NS |
| MT |
| NS |
£¨¢ó£©ÉèÅ×ÎïÏßE£ºy2=4xµÄ¶¥µãΪA£¬¶¨µãG£¨g£¬0£©£¨g¡Ù0£©£¬¹ýµãGµÄÖ±ÏßlÓëÅ×ÎïÏßEÏཻÓÚS¡¢TÁ½µã£¬Ö±ÏßAS¡¢AT·Ö±ð½»Ö±Ïßx=-gÓÚM¡¢NÁ½µã£¬ÔòMT¡ÎNS£®
½â´ð£º
½â£º£¨¢ñ£©°ÑxS=4£¬yS=4´úÈëy2=2px£¬µÃp=2£¬¡£¨3·Ö£©
Òò´Ë£¬Å×ÎïÏßEµÄ·½³Ìy2=4x£®¡£¨4·Ö£©
£¨¢ò£©ÒòΪÅ×ÎïÏßEµÄ½¹µãΪF£¨1£¬0£©£¬ÉèS£¨x1£¬y1£©£¬T£¨x2£¬y2£©£¬
ÒÀÌâÒâ¿ÉÉèÖ±Ïßl£ºmy=x-1£¬
´úÈëÅ×ÎïÏß·½³ÌµÃy2-4my-4=0£¬
Ôòy1+y2=4m£¬y1y2=-4 ¢Ù¡£¨6·Ö£©
ÓÖÒòΪlAS£ºy=
•x£¬lAT£ºy=
•x£¬
ËùÒÔM£¨-1£¬-
£©£¬N£¨-1£¬-
£©£¬
ËùÒÔ
=£¨x2+1£¬y2+
£©£¬
=£¨x1+1£¬y1+
£©£¬¡£¨7·Ö£©
ÓÖÒòΪ£¨y2+
£©£¨x1+1£©-£¨y1+
£©£¨x2+1£©£¬¡£¨8·Ö£©
=£¨y1-y2£©£¨
£©£¬¢Ú
°Ñ¢Ù´úÈë¢Ú£¬µÃ£¨y1-y2£©£¨
£©=0£¬¡£¨10·Ö£©
¼´£¨y2+
£©£¨x1+1£©-£¨y1+
£©£¨x2+1£©=0£¬
ËùÒÔ
¡Î
£¬
ÓÖÒòΪM¡¢T¡¢N¡¢SËĵ㲻¹²Ïߣ¬ËùÒÔMT¡ÎNS£®¡£¨11·Ö£©
£¨¢ó£©ÉèÅ×ÎïÏßE£ºy2=4xµÄ¶¥µãΪA£¬¶¨µãG£¨g£¬0£©£¨g¡Ù0£©£¬¹ýµãGµÄÖ±ÏßlÓëÅ×ÎïÏßEÏཻÓÚS¡¢TÁ½µã£¬Ö±ÏßAS¡¢AT·Ö±ð½»Ö±Ïßx=-gÓÚM¡¢NÁ½µã£¬ÔòMT¡ÎNS£®¡£¨14·Ö£©
Òò´Ë£¬Å×ÎïÏßEµÄ·½³Ìy2=4x£®¡£¨4·Ö£©
£¨¢ò£©ÒòΪÅ×ÎïÏßEµÄ½¹µãΪF£¨1£¬0£©£¬ÉèS£¨x1£¬y1£©£¬T£¨x2£¬y2£©£¬
ÒÀÌâÒâ¿ÉÉèÖ±Ïßl£ºmy=x-1£¬
´úÈëÅ×ÎïÏß·½³ÌµÃy2-4my-4=0£¬
Ôòy1+y2=4m£¬y1y2=-4 ¢Ù¡£¨6·Ö£©
ÓÖÒòΪlAS£ºy=
| y1 |
| x1 |
| y2 |
| x2 |
ËùÒÔM£¨-1£¬-
| y1 |
| x1 |
| y2 |
| x2 |
ËùÒÔ
| MT |
| y1 |
| x1 |
| NS |
| y2 |
| x2 |
ÓÖÒòΪ£¨y2+
| y1 |
| x1 |
| y2 |
| x2 |
=£¨y1-y2£©£¨
| y12y22-16 |
| 4y1y2 |
°Ñ¢Ù´úÈë¢Ú£¬µÃ£¨y1-y2£©£¨
| y12y22-16 |
| 4y1y2 |
¼´£¨y2+
| y1 |
| x1 |
| y2 |
| x2 |
ËùÒÔ
| MT |
| NS |
ÓÖÒòΪM¡¢T¡¢N¡¢SËĵ㲻¹²Ïߣ¬ËùÒÔMT¡ÎNS£®¡£¨11·Ö£©
£¨¢ó£©ÉèÅ×ÎïÏßE£ºy2=4xµÄ¶¥µãΪA£¬¶¨µãG£¨g£¬0£©£¨g¡Ù0£©£¬¹ýµãGµÄÖ±ÏßlÓëÅ×ÎïÏßEÏཻÓÚS¡¢TÁ½µã£¬Ö±ÏßAS¡¢AT·Ö±ð½»Ö±Ïßx=-gÓÚM¡¢NÁ½µã£¬ÔòMT¡ÎNS£®¡£¨14·Ö£©
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²éÅ×ÎïÏߵıê×¼·½³Ì¡¢Ö±ÏßÓëÔ²×¶ÇúÏßµÄλÖùØÏµµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢·ÖÀàÓëÕûºÏ˼Ïë¡¢ÊýÐνáºÏ˼ÏëµÈ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Èç¹ûx£¾y£¾0£¬Ôò
=£¨¡¡¡¡£©
| xyyx |
| xxyy |
A¡¢(x-y)
| ||
B¡¢(x-y)
| ||
C¡¢(
| ||
D¡¢(
|