题目内容

某旅游景点预计2013年1月份起第x月的旅游人数p(x)(单位:万人)与x的关系近似地满足p(x)=-3x2+40x(x∈N*,1≤x≤12),已知第x月的人均消费额q(x)(单位:元)与x的近似关系是q(x)=
35-2x(x∈N*,且1≤x≤6)
160
x
(x∈N*,且7≤x≤12)
,试问2013年第几月旅游消费总额最大,最大月旅游消费总额为多少元?
考点:函数模型的选择与应用,分段函数的应用
专题:应用题,导数的概念及应用
分析:根据所给的表示式,写出第x月旅游消费总额,是一个分段函数,求出分段函数的最大值,把两个最大值进行比较,得到最大月旅游消费总额.
解答: 解:第x月旅游消费总额为g(x)=
(-3x2+40x)(35-2x)(1≤x≤6,x∈N+)
(-3x2+40x)•
160
x
(7≤x≤12,x∈N+)

即g(x)=
6x3-185x2+1400x,1≤x≤6;
-480x+6400,7≤x≤12
(x∈N*)…(8分)
当1≤x≤6,且x∈N*时,g′(x)=18x2-370x+1400,令g′(x)=0,解得x=5,x=
140
9
(舍去).
∴当1≤x<5时,g′(x)>0,当5<x≤6时,g′(x)<0,
∴当x=5时,g(x)max=g(5)=3125(万元).…(10分)
当7≤x≤12,且x∈N*时,g(x)=-480x+6400是减函数,∴当x=7时,g(x)max=g(7)=3040(万元),
综上,2013年第5月份的旅游消费总额最大,最大月旅游消费总额为3125万元.…(12分)
点评:本题考查函数模型的选择和导数的应用,本题解题的关键是写出分段函数,要分别求出两段函数的最大值,进行比较.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网