题目内容
等差数列{an}的各项均为正数,a1=3,前n项和为Sn,数列{bn}为等比数列,b1=2,且b2S2=32,b3S3=120.
(1)求数列{an}与{bn}的通项公式;
(2)求数列{
}的前n项和Tn.
(1)求数列{an}与{bn}的通项公式;
(2)求数列{
| 1 |
| Sn |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知得
,由此能求出an=3+2(n-1)=2n+1,bn=2n.
(2)由Sn=n(n+2),得
=
=
(
-
),由此利用裂项法能求出数列{
}的前n项和Tn.
|
(2)由Sn=n(n+2),得
| 1 |
| Sn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| Sn |
解答:
解:(1)设{an}的公差为d,{bn}的公比为q,则d为正整数,
∴an=3+(n-1)d,bn=2qn-1,
依题意,得
,
解得d=2,q=2,或d=-
,q=
(不合题意,舍)
故an=3+2(n-1)=2n+1,bn=2n.
(2)∵Sn=3+5+…+(2n+1)=n(n+2),
∴
=
=
(
-
),
∴Tn=
(1-
+
-
+
-
+…+
-
)
=
(1+
-
-
)
=
.
∴an=3+(n-1)d,bn=2qn-1,
依题意,得
|
解得d=2,q=2,或d=-
| 6 |
| 5 |
| 10 |
| 3 |
故an=3+2(n-1)=2n+1,bn=2n.
(2)∵Sn=3+5+…+(2n+1)=n(n+2),
∴
| 1 |
| Sn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3n2+5 |
| 4(n+1)(n+2) |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目