题目内容

7.已知函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<φ<π)是奇函数,直线y=$\sqrt{2}$与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为$\frac{π}{2}$,则(  )
A.f(x)在$(0,\frac{π}{4})$上单调递减B.f(x)在$(\frac{π}{8},\frac{3π}{8})$上单调递减
C.f(x)在$(0,\frac{π}{4})$上单调递增D.f(x)在$(\frac{π}{8},\frac{3π}{8})$上单调递增

分析 根据两角和的正弦函数化简解析式,由条件和诱导公式求出φ的值,由条件和周期共识求出ω的值,根据正弦函数的单调性和选项判断即可.

解答 解:由题意得,f(x)=sin(ωx+φ)+cos(ωx+φ)
=$\sqrt{2}$[$\frac{\sqrt{2}}{2}$sin(ωx+φ)+$\frac{\sqrt{2}}{2}$cos(ωx+φ)]
=$\sqrt{2}sin(ωx+φ+\frac{π}{4})$,
∵函数f(x)(ω>0,0<φ<π)是奇函数,
∴$φ+\frac{π}{4}=kπ(k∈Z)$,则$φ=-\frac{π}{4}+kπ(k∈Z)$,又0<φ<π,
∴φ=$\frac{3π}{4}$,∴f(x)=$\sqrt{2}sin(ωx+\frac{3π}{4}+\frac{π}{4})$=$-\sqrt{2}sinωx$,
∵y=$\sqrt{2}$与f(x)的图象的两个相邻交点的横坐标之差的绝对值为$\frac{π}{2}$,
∴T=$\frac{2π}{ω}=\frac{π}{2}$,则ω=4,即f(x)=$-\sqrt{2}sin4x$,
由$x∈(0,\frac{π}{4})$得4x∈(0,π),则f(x)在$(0,\frac{π}{4})$上不是单调函数,排除A、C;
由$x∈(\frac{π}{8},\frac{3π}{8})$得4x∈$(\frac{π}{2},\frac{3π}{2})$,则f(x)在$(\frac{π}{8},\frac{3π}{8})$上是增函数,排除B,
故选:D.

点评 本题考查两角和的正弦函数、诱导公式,三角函数的周期公式,以及正弦函数的单调性的应用,考查化简、计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网