题目内容

12.已知函数f(x)=$\frac{x}{2x-1}$+cos(x-$\frac{π+1}{2}$),则$\sum_{k=1}^{2016}$$f(\frac{k}{2017})$的值为(  )
A.2016B.1008C.504D.0

分析 函数f(x)=$\frac{x}{2x-1}$+cos(x-$\frac{π+1}{2}$),可得f(x)+f(1-x)=0,即可得出.

解答 解:∵函数f(x)=$\frac{x}{2x-1}$+cos(x-$\frac{π+1}{2}$),∴f(x)+f(1-x)=$\frac{x}{2x-1}$+cos(x-$\frac{π+1}{2}$)+$\frac{1-x}{2(1-x)-1}$+$cos(1-x-\frac{π+1}{2})$=1+0=1,
则$\sum_{k=1}^{2016}$$f(\frac{k}{2017})$=$\frac{1}{2}×$2016=1008.
故选:B.

点评 本题考查了数列求和、函数性质、三角函数和差公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网