题目内容
12.已知函数f(x)=$\frac{x}{2x-1}$+cos(x-$\frac{π+1}{2}$),则$\sum_{k=1}^{2016}$$f(\frac{k}{2017})$的值为( )| A. | 2016 | B. | 1008 | C. | 504 | D. | 0 |
分析 函数f(x)=$\frac{x}{2x-1}$+cos(x-$\frac{π+1}{2}$),可得f(x)+f(1-x)=0,即可得出.
解答 解:∵函数f(x)=$\frac{x}{2x-1}$+cos(x-$\frac{π+1}{2}$),∴f(x)+f(1-x)=$\frac{x}{2x-1}$+cos(x-$\frac{π+1}{2}$)+$\frac{1-x}{2(1-x)-1}$+$cos(1-x-\frac{π+1}{2})$=1+0=1,
则$\sum_{k=1}^{2016}$$f(\frac{k}{2017})$=$\frac{1}{2}×$2016=1008.
故选:B.
点评 本题考查了数列求和、函数性质、三角函数和差公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
7.已知函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<φ<π)是奇函数,直线y=$\sqrt{2}$与函数f(x)的图象的两个相邻交点的横坐标之差的绝对值为$\frac{π}{2}$,则( )
| A. | f(x)在$(0,\frac{π}{4})$上单调递减 | B. | f(x)在$(\frac{π}{8},\frac{3π}{8})$上单调递减 | ||
| C. | f(x)在$(0,\frac{π}{4})$上单调递增 | D. | f(x)在$(\frac{π}{8},\frac{3π}{8})$上单调递增 |
17.已知命题p:“m=-1”,命题q:“直线x-y=0与直线x+m2y=0互相垂直”,则命题p是命题q的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要 |
1.若α,β是两个不同平面,m,n是两条不同直线,则下列结论错误的是( )
| A. | 如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等 | |
| B. | 如果m⊥n,m⊥α,n∥β,那么α⊥β | |
| C. | 如果α∥β,m?α,那么m∥β | |
| D. | 如果m⊥α,n∥α,那么m⊥n |
2.目前,学案导学模式已经成为教学中不可或缺的一部分,为了了解学案的合理使用是否对学生的期末复习有着重要的影响,我校随机抽取100名学生,对学习成绩和学案使用程度进行了调查,统计数据如表所示:
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
已知随机抽查这100名学生中的一名学生,抽到善于使用学案的学生概率是0.6.
(1)请将上表补充完整(不用写计算过程);
(2)试运用独立性检验的思想方法分析:有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
(3)若从学习成绩优秀的同学中随机抽取10人继续调查,采用何种方法较为合理,试说明理由.
| 善于使用学案 | 不善于使用学案 | 总计 | |
| 学习成绩优秀 | 40 | ||
| 学习成绩一般 | 30 | ||
| 总计 | 100 |
参考数据:
| P(K2≥k0) | 0.050 | 0.010 | 0.001 |
| k0 | 3.841 | 6.635 | 10.828 |
(1)请将上表补充完整(不用写计算过程);
(2)试运用独立性检验的思想方法分析:有多大的把握认为学生的学习成绩与对待学案的使用态度有关?
(3)若从学习成绩优秀的同学中随机抽取10人继续调查,采用何种方法较为合理,试说明理由.