题目内容
数列{an}的各项均为正数,Sn其前n项和,对于任意的n∈N*总有an,Sn,an2成等差数列
(1)求a1;
(2)求数列{an}的通项公式;
(3)设数列{bn}的前n项和为Tn,且bn=
,求证:对任意正整数n,总有Tn<2.
(1)求a1;
(2)求数列{an}的通项公式;
(3)设数列{bn}的前n项和为Tn,且bn=
| 1 |
| an2 |
考点:数列的求和,数列递推式
专题:综合题,等差数列与等比数列
分析:(1)由已知:对于任意的n∈N*总有an,Sn,an2成等差数列,数列{an}的各项均为正数,可得2S1=a1+a12,即可求a1;
(2)由已知可得2Sn-1=an-1+an-12(n≥2从而导出an+an-1=(an+an-1)(an-an-1),利用an,an-1均为正数,所以an-an-1=1(n≥2),由此推出an=n.
(3)利用放缩、裂项法,即可证明结论.
(2)由已知可得2Sn-1=an-1+an-12(n≥2从而导出an+an-1=(an+an-1)(an-an-1),利用an,an-1均为正数,所以an-an-1=1(n≥2),由此推出an=n.
(3)利用放缩、裂项法,即可证明结论.
解答:
解:(1)由已知:对于任意的n∈N*总有an,Sn,an2成等差数列,数列{an}的各项均为正数,
∴2S1=a1+a12,解得a1=1
(2)由已知:对于n∈N*,总有2Sn=an+an2①成立
∴2Sn-1=an-1+an-12(n≥2)②
①②得2an=an+an2-an-1-an-12
∴an+an-1=(an+an-1)(an-an-1)∵an,an-1均为正数,
∴an-an-1=1(n≥2)
∴数列{an}是公差为1的等差数列.
∴an=n.
(3)bn=
=
<
-
(n≥2)
当n=1时,Tn=b1=1<2,
当n≥2时,Tn=
+
+…+
<1+(1-
)+(
-
)+…+(
-
)=2-
<2,
∴对任意正整数n,总有Tn<2.
∴2S1=a1+a12,解得a1=1
(2)由已知:对于n∈N*,总有2Sn=an+an2①成立
∴2Sn-1=an-1+an-12(n≥2)②
①②得2an=an+an2-an-1-an-12
∴an+an-1=(an+an-1)(an-an-1)∵an,an-1均为正数,
∴an-an-1=1(n≥2)
∴数列{an}是公差为1的等差数列.
∴an=n.
(3)bn=
| 1 |
| an2 |
| 1 |
| n2 |
| 1 |
| n-1 |
| 1 |
| n |
当n=1时,Tn=b1=1<2,
当n≥2时,Tn=
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| n2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
∴对任意正整数n,总有Tn<2.
点评:本题考查数列的求和,着重考查递推关系的应用及等差关系关系的确定,这是重点也是难点,属于中档题
练习册系列答案
相关题目